Swift pointer problems with MACH_TASK_BASIC_INFO
Took me a bit to update Airspeed Velocity's answer to the latest swift syntax (Swift 3, beta 6), but here is what I got:
func report_memory() {
var info = mach_task_basic_info()
let MACH_TASK_BASIC_INFO_COUNT = MemoryLayout<mach_task_basic_info>.stride/MemoryLayout<natural_t>.stride
var count = mach_msg_type_number_t(MACH_TASK_BASIC_INFO_COUNT)
let kerr: kern_return_t = withUnsafeMutablePointer(to: &info) {
$0.withMemoryRebound(to: integer_t.self, capacity: MACH_TASK_BASIC_INFO_COUNT) {
task_info(mach_task_self_,
task_flavor_t(MACH_TASK_BASIC_INFO),
$0,
&count)
}
}
if kerr == KERN_SUCCESS {
print("Memory in use (in bytes): \(info.resident_size)")
}
else {
print("Error with task_info(): " +
(String(cString: mach_error_string(kerr), encoding: String.Encoding.ascii) ?? "unknown error"))
}
}
Hope that's helpful.
For a quick copy and paste solution in Swift 5, use
func reportMemory() {
var taskInfo = task_vm_info_data_t()
var count = mach_msg_type_number_t(MemoryLayout<task_vm_info>.size) / 4
let result: kern_return_t = withUnsafeMutablePointer(to: &taskInfo) {
$0.withMemoryRebound(to: integer_t.self, capacity: 1) {
task_info(mach_task_self_, task_flavor_t(TASK_VM_INFO), $0, &count)
}
}
let usedMb = Float(taskInfo.phys_footprint) / 1048576.0
let totalMb = Float(ProcessInfo.processInfo.physicalMemory) / 1048576.0
result != KERN_SUCCESS ? print("Memory used: ? of \(totalMb)") : print("Memory used: \(usedMb) of \(totalMb)")
}
When interacting with C functions, you can't rely on the compiler's error messages - break it down parameter by parameter, command-clicking until you know what you're working with. To start with, the types you're running into are:
task_name_t
:UInt32
task_flavor_t
:UInt32
task_info_t
:UnsafeMutablePointer<Int32>
UnsafeMutablePointer<mach_msg_type_number_t>
:UnsafeMutablePointer<UInt32>
kern_return_t
-Int32
There's one tricky Swift bit along with a bug in your code standing in your way here. First, the task_info_out
parameter needs to be a UnsafeMutablePointer<UInt32>
, but needs to actually point to an instance of mach_task_basic_info
. We can get around this by creating a UnsafeMutablePointer<mach_task_basic_info>
and wrapping it in another UnsafeMutablePointer
at call time - the compiler will use type inference to know we want that wrapping pointer to be sub-typed as UInt32
.
Second, you're calling sizeof(mach_task_basic_info_t)
(the pointer to mach_task_basic_info
) when you should be calling sizeinfo(mach_task_basic_info)
, so your byte count ends up too low to hold the data structure.
On further research, this got a little more complicated. The original code for this was incorrect, in that size
should be initialized to the constant MACH_TASK_BASIC_INFO_COUNT
. Unfortunately, that's a macro, not a simple constant:
#define MACH_TASK_BASIC_INFO_COUNT (sizeof(mach_task_basic_info_data_t) / sizeof(natural_t))
Swift doesn't import those, so we'll need to redefine it ourselves. Here's working code for all this:
// constant
let MACH_TASK_BASIC_INFO_COUNT = (sizeof(mach_task_basic_info_data_t) / sizeof(natural_t))
// prepare parameters
let name = mach_task_self_
let flavor = task_flavor_t(MACH_TASK_BASIC_INFO)
var size = mach_msg_type_number_t(MACH_TASK_BASIC_INFO_COUNT)
// allocate pointer to mach_task_basic_info
var infoPointer = UnsafeMutablePointer<mach_task_basic_info>.alloc(1)
// call task_info - note extra UnsafeMutablePointer(...) call
let kerr = task_info(name, flavor, UnsafeMutablePointer(infoPointer), &size)
// get mach_task_basic_info struct out of pointer
let info = infoPointer.move()
// deallocate pointer
infoPointer.dealloc(1)
// check return value for success / failure
if kerr == KERN_SUCCESS {
println("Memory in use (in bytes): \(info.resident_size)")
} else {
let errorString = String(CString: mach_error_string(kerr), encoding: NSASCIIStringEncoding)
println(errorString ?? "Error: couldn't parse error string")
}