Symbolic vs Numeric Math - Performance
This is not a direct answer to the question but a suggested course correction.
While it is possible to evaluate math expressions in a purely numeric means or in a purely symbolic means, it is also possible to use a hybrid approach.
This is know as Symbolic-numeric computation
Maple is one software package that has this ability.
Note: I have never used Maple so I can't add more.
Searching for packages
I find I get better results when searching for math packages that use symbolic-numeric computation by searching for the name of the package combined with Symbolic-numeric computation, e.g.
wolfram symbolic-numeric computation
A specific example related to neural networks
In the world of neural networks one has to be able to calculate the derivative, however if a derivate can be simplified before calculating then the cost of calculating goes down. Since simplifying the derivative is a one time action while the cost of calculating occurs thousands to millions of times, the simplification is done symbolically and then the calculation is done numerically. Theano is a software package that does this specifically for use with neural networks.
I am the individual who answered the Scicomp question you reference in your question. I personally am not aware of any empirical metrics performed to compare run-time performance for symbolic versus numerical solutions to systems of polynomial equations.
However, it should be fairly intuitive that symbolic solutions will have a bit more overhead for most aspects of solving the problem due to things such as manipulation of terms in the equation symbolically, searching how to simplify/rearrange equations to make them easier to solve, searching through known closed form solutions, etc. One major issue with symbolic solvers is that you may not have a closed form solution you can find and use, so solving it numerically would have to happen either way.
The only way I can see symbolic solvers outperforming numerical solutions in terms of run-time is if the symbolic solver can quickly enough recognize your problem as one with a known analytical solution or if it arrives at the solution eventually while the numerical solver never does (aka it diverges).
Given you can find a numerical solver that converges, I think the numerical case will generally be much more efficient since there's just much less overhead to make progress in refining your solution. Since you mention solving systems of polynomial equations, I suspect there are also some tailored algorithms for your type of problem that may be superior to typical nonlinear equation solving schemes.