Symmetric icons

dat = Quiet@ReIm@NestList[f, z0, 10000000];

Binning

Using the method from this answer for bin counts:

res = 1000; 
epsilon = 1*^-10;
indices = 1 + Floor[(1 - epsilon) res Rescale[dat]];
System`SetSystemOptions["SparseArrayOptions" -> {"TreatRepeatedEntries" -> Total}];
matrix = SparseArray[indices -> 1., {res, res}];
System`SetSystemOptions["SparseArrayOptions" -> {"TreatRepeatedEntries" -> First}]; 

Image

You can play with different scalings for bincounts:

Image[1 - Rescale[matrix^(1/4)], ImageSize -> Large]

enter image description here

Image[Map[Blend[{ Red, Orange, Yellow,  White}, #^4] &, 
  1 - Rescale[Normal[matrix]^(1/4)], {2}], ImageSize -> Large]

enter image description here

MatrixPlot

 MatrixPlot[Rescale[matrix^(1/4)], ImageSize -> Large, 
  MaxPlotPoints -> Infinity, Frame -> False, 
  ColorFunction -> "Rainbow", ColorFunctionScaling -> False]

enter image description here

Add the option ColorRules -> {0. -> Black} to get

enter image description here

ComplexListPlot

ComplexListPlot[NestList[f, z0, 50000], 
  AspectRatio -> 1, Axes -> False, Background -> Black, 
 ColorFunction -> (ColorData["Rainbow"][Abs[ f[# + #2 I]]] &), 
 ColorFunctionScaling -> False]

enter image description here

ListPlot + VertexColors

You can post-process ListPlot output to add VertexColors:

{min, max} = MinMax[Abs@NestList[f, z0, 500000]]; 

ListPlot[ReIm@NestList[f, z0, 500000], AspectRatio -> 1, 
  Axes -> False, BaseStyle -> PointSize[Tiny]] /. 
 Point[x_] :>  Point[x, VertexColors -> (Opacity[.5, #] & /@ 
      ColorData[{"Rainbow", {min, max}}] /@ (Abs@f[# + I #2] & @@@ x))]

enter image description here

Graphics + VertexColors

{min, max} = MinMax[Abs@NestList[f, z0, 500000]]; 

Graphics[{PointSize[Tiny], Opacity[.5], 
  Point[#, VertexColors -> ColorData[{"Rainbow", {min, max}}]/@ (Abs@f[# + I #2]&@@@#)]&[
   ReIm@NestList[f, z0, 500000]]}, 
 AspectRatio -> 1]

enter image description here


Here's a quick-and-dirty approach which might be helpful - but is pretty slow on reasonable image sizes (that is, could be improved):

With[{bc = 
    BinCounts[ReIm@data, 
     Sequence @@ ({#1, #2, (#2 - #1)/256} & @@@ 
        CoordinateBounds@ReIm@data)]}, 
  bc /. Map[
    Evaluate[# -> 
       ColorData["SunsetColors"]@
        N@CDF[HistogramDistribution@Flatten@bc, #] &], 
    Union@Flatten@bc]] // Image

Histogram-based

BinCounts is performed for a square defined by bounds of the dataset and color is assigned to each unique value in the count on basis of CDF of the distribution of these values. In this case ColorData["SunsetColors"] is used as a palette, but something custom could be used as well.

Something similar can be also achieved by "gamma-correcting" the range of bin counts. This is dramatically faster for a reason or another:

With[{bc = 
    BinCounts[ReIm@data, 
     Sequence @@ ({#1, #2, (#2 - #1)/256} & @@@ 
        CoordinateBounds@ReIm@data)]}, 
  Map[
   ColorData["SunsetColors"],
   (bc/N@Max@Flatten@bc)^(1/5), {2}]] // Image

Gamma corrected