Symmetric matrix multiplication
Both claims are false and almost any $A$ and $B$ are counterexamples. For a specific example, you can see $$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 5 \\ 3 & 5 \end{pmatrix}$$ while $$\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ 5 & 5 \end{pmatrix}.$$
Recall that by definition the product of two matrices (with components $A_{ij}$, $B_{ij}$) has components $(AB)_{ik}=\sum_j A_{i j} B_{jk}$. What about the components of ${BA}$? You'll also need to see what being symmetric implies about the components $A_{ij}$.