Menu
NEWBEDEV
Python
Javascript
Linux
Cheat sheet
NEWBEDEV
Python 1
Javascript
Linux
Cheat sheet
Contact
New posts in Holder Inequality
Algebraic inequality $\sum \frac{x^3}{(x+y)(x+z)(x+t)}\geq \frac{1}{2}$
May 10, 2021
Show that $\int_0^1 f^3(x) dx + \frac{4}{27} \ge \left( \int_0^1 f(x) dx \right)^2$, where $f',f'' >0$
May 09, 2021
For non-negative reals $a$, $b$, $c$, show that $3(1-a+a^2)(1-b+b^2)(1-c+c^2)\ge(1+abc+a^2b^2c^2)$
May 08, 2021
Prove $\sqrt[3]{\frac{(a^4+b^4)(a^4+c^4)(b^4+c^4)}{abc}}\ge \sqrt{\frac{(a^3+bc)(b^3+ca)(c^3+ab)}{1+abc}}$
May 08, 2021
Upper Bound for a Sum
May 07, 2021
Maximum value of expression $a+b+c$
May 06, 2021
Prove that $({a\over a+b})^3+({b\over b+c})^3+ ({c\over c+a})^3\geq {3\over 8}$
May 05, 2021
For $a\geq2$, $b\geq2$ and $c\geq2$, prove that $\left(a^3+b\right)\left(b^3+c\right)\left(c^3+a\right)\geq125 abc$
May 05, 2021
Contest Math: Finding maximum value under restrictions
May 03, 2021
Proving that $\frac{ab}{c^3}+\frac{bc}{a^3}+\frac{ca}{b^3}> \frac{1}{a}+\frac{1}{b}+\frac{1}{c}$
May 03, 2021
Older Entries »