The kernel of a nef line bundle

Consider $V=\mathbb{P}^1\times \mathbb{P}^2$ with projections $p_1\colon V \rightarrow \mathbb{P}^1 \text{ and } p_2\colon V \rightarrow\mathbb{P}^2.$ Let $L = p_1^*(\mathcal{O}_{\mathbb{P}^1}(1))$, let $X = p_2^{-1}(\ell_1)$ and $Y=p_2^{-1}(\ell_2)$ for two distinct lines $\ell_1$ and $\ell_2\subset \mathbb{P}^2$. Then $Z = X\cap Y \cong \mathbb{P}^1$ is a section of $p_1$.

Finally we have $\deg_L(X) = \deg_L(Y) = 0$, but $\deg_L(X\cap Y) = 1$.