The limit $\lim_{r\to0}\frac1r\left(1-\binom{n}{r}^{-1}\right)$

Let's use Beta function:

$$\frac1{\binom{n}{r}}=\frac{(n-r)! r!}{n!}=\frac{\Gamma(n-r+1) \Gamma (r+1)}{\Gamma (n+1)}=r B(r,n-r+1)=$$

$$=r \int_0^1 t^{r-1} (1-t)^{n-r} dt$$

We also can write:

$$1=r \int_0^1 t^{r-1} dt$$

Which gives us:

$$\lim_{r\to0}\frac1r\left(1-\frac1{\binom{n}{r}}\right)=\lim_{r\to0} \int_0^1 t^{r-1} \left(1-(1-t)^{n-r} \right) dt=$$

$$=\int_0^1 \frac{1-(1-t)^n}{t} dt=\int_0^1 \frac{1-t^n}{1-t} dt=H_n$$

As per the usual definition of Harmonic numbers.


You could even get more than the limit itself since, for $r$ close to $0$ $$\binom{n}{r}=1+r H_n+\frac{1}{12} r^2 \left(6 \left(H_n\right){}^2-6 \psi ^{(1)}(n+1)-\pi ^2\right)+O\left(r^3\right)$$

$$\frac 1{\binom{n}{r}}=1-r H_n+\frac{1}{12} r^2 \left(6 \left(H_n\right){}^2+6 \psi ^{(1)}(n+1)+\pi ^2\right)+O\left(r^3\right)$$ $$\frac1r\left(1-\frac1{\binom{n}{r}}\right)=H_n-\frac{1}{12} r \left(6 \left(H_n\right){}^2+6 \psi ^{(1)}(n+1)+\pi ^2\right)+O\left(r^2\right)$$


We can write $$ \eqalign{ & {1 \over r}\left( {1 - {1 \over {\left( \matrix{ n \cr r \cr} \right)}}} \right) = {1 \over r}\left( {1 - {{\Gamma \left( {r + 1} \right)\Gamma \left( {n - r + 1} \right)} \over {\Gamma \left( {n + 1} \right)}}} \right) = \cr & = \left( {{{\Gamma \left( {n + 1} \right) - \Gamma \left( {r + 1} \right)\Gamma \left( {n + 1 - r} \right)} \over {r\,\Gamma \left( {n + 1} \right)}}} \right) = \cr & = {1 \over {\Gamma \left( {n + 1} \right)}}\left( {{{\Gamma \left( {n + 1} \right) - \left( {1 - \gamma \,r + O(r^{\,2} )} \right)\Gamma \left( {n + 1 - r} \right)} \over r}} \right) = \cr & = {1 \over {\Gamma \left( {n + 1} \right)}}\left( {{{\Gamma \left( {n + 1} \right) - \Gamma \left( {n + 1 - r} \right)} \over r} + \gamma \,\Gamma \left( {n + 1 - r} \right) + O(r)\,\Gamma \left( {n + 1 - r} \right)} \right) \cr} $$

and thus $$ \eqalign{ & \mathop {\lim }\limits_{r\, \to \,0} \;{1 \over r}\left( {1 - {1 \over {\left( \matrix{ n \cr r \cr} \right)}}} \right) = \mathop {\lim }\limits_{r\, \to \,0} {{\left( {{{\Gamma \left( {n + 1} \right) - \Gamma \left( {n + 1 - r} \right)} \over r}} \right)} \over {\Gamma \left( {n + 1} \right)}} + \gamma = \cr & = \psi (n + 1) + \gamma = H_{\,n} \; \cr} $$