The limit of truncated sums of harmonic series, $\lim\limits_{k\to\infty}\sum_{n=k+1}^{2k}{\frac{1}{n}}$
Rewriting the sum as $$ \sum_{n=k+1}^{2k}\frac1n=\sum_{n=k+1}^{2k}\frac1k\cdot\frac1{n/k} $$ allows us to identify this as a Riemann sum related to the definite integral $$\int_1^2\frac1x\,dx=\ln 2.$$ To see that, divide the interval $[1,2]$ to $k$ equal length subintervals, and evaluate the function $f(x)=1/x$ at the right end of each subinterval. When $k\to\infty$, the Riemann sums will then tend to the value of this definite integral.
The summation you have written converges to $\log(2)$.$$\lim_{k \rightarrow \infty} \sum_{n=k+1}^{2k} \frac1n = \lim_{k \rightarrow \infty} \left( \sum_{n=1}^{2k} \frac1n - \sum_{n=1}^{k} \frac1n\right) = \lim_{k \rightarrow \infty} \left( \sum_{n=1}^{2k} \frac1n - \log(2k) - \sum_{n=1}^{k} \frac1n + \log(k) + \log(2) \right).$$ Note that $$\lim_{k \rightarrow \infty } \left(\sum_{n=1}^{k} \frac1n - \log(k) \right) = \gamma.$$ Let $\displaystyle a_k = \left(\sum_{n=1}^{k} \frac1n - \log(k) \right)$ and we have $\displaystyle \lim_{k \rightarrow \infty} a_k = \gamma$. Hence, the summation you have can be written as $$\lim_{k \rightarrow \infty} \sum_{n=k+1}^{2k} \frac1n = \lim_{k \rightarrow \infty} \left(a_{2k} -a_k + \log(2) \right) = \gamma - \gamma + \log(2) = \log(2)$$
METHOD I
We may recall the celebre limit that yields Euler-Mascheroni constant, namely:
$$\lim_{n\to\infty} 1+\frac1{2}+\cdots+\frac{1}{n}-\ln{n}={\gamma}$$ $\tag{$\gamma$ is Euler-Mascheroni constant}$ Then everything boils down to: $$\lim_{n\to\infty}\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n} = \lim_{n\to\infty}{\gamma}+\ln{2n}-{\gamma}-\ln{n}= \ln{2}.$$
METHOD II
Use one of the consequences of the Lagrange's theorem applied on $\ln(x)$ function, namely:
$$\frac{1}{k+1} < \ln(k+1)-\ln(k)<\frac{1}{k} \space , \space k\in\mathbb{N} ,\space k>0$$
Taking $k=n,n+1,...,2n$ values to the inequality and then summing all relations, we get all we need in order to apply Squeeze theorem.
METHOD III
We may use Botez-Catalan identity and immediately get that:
$$\lim_{n\to\infty}\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n} = \lim_{n\to\infty} 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots + (-1)^{2n+1}\frac{1}{2n}= $$ $$\lim_{n\to\infty} 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots + (-1)^{n+1}\frac{1}{n}=\ln{2}.$$ The last series' limit is obtained by using Taylor expansion of $\ln(x+1)$ and take $x=1$
The proofs are complete.