This sequence $\lfloor \sqrt{2003}\cdot n\rfloor $ contains an infinite number of square numbers
Assume that $\frac{p}{q}$ is a convergent of the continued fraction of $\sqrt{2003}$. We have
$$ \left|\sqrt{2003}-\frac{p}{q}\right|\leq \frac{1}{q^2} $$
hence $n=pq$ (or $n=pq\pm 1$) is a good candidate for $\left\lfloor n\sqrt{2003}\right\rfloor$ to be a square, since
$$ \left| pq\sqrt{2003}-p^2\right|\leq \frac{p}{q}\approx\sqrt{2003}. $$
You just have to show that among the best rational approximations given by the continued fraction of $\sqrt{2003}$, there are some "very best" approximations for which
$$ \left|\sqrt{2003}-\frac{p}{q}\right|\leq \frac{C}{q^2} $$
holds with a very small constant $C$.
That can be done by explicitly writing the continued fraction of $\sqrt{2003}$
$$\sqrt{2003}=[44;\overline{1,3,12,1,1,6,2,1,2,1,3,6,7,1,\color{red}{43},1,7,6,3,1,2,1,2,6,1,1,12,3,1,\color{red}{88}}]$$
and studying what happens at each step, especially when we meet a large element of such continued fraction.
Yes, using the Pell equation is a great idea! In this case, the best Pell equation to use is $x^2-2003y^2 = -2$ (there are no solutions to the $-1$ version of this Pell equation). Given such a solution, note that $$ xy\sqrt{2003} - x^2 = \frac{2x}{y\sqrt{2003} + x} = \frac{2x}{\sqrt{x^2+2} + x}, $$ and therefore $$ 0 < xy\sqrt{2003} - x^2 < 1, $$ showing that $\lfloor xy\sqrt{2003} \rfloor = x^2$.
The first solution to the Pell equation $x^2-2003y^2 = -2$ is $(x,y) = (65912269,1472739)$, and an infinite family of solutions can be generated in the usual way using the fundamental solution $(x_1,y_1) = (4344427204728362,97071569134791)$ to $x^2-2003y^2 = 1$. (And indeed, these two solutions come exactly from the convergents indicated by the red numbers in Jack D'Aurizio's answer!)
Make this CW... the business with $xy \sqrt d$ does not work, as such, for $\sqrt 7.$ However, we seem to have no trouble finding $n$ for which $\lfloor n \sqrt 7 \rfloor$ is a square. So, are there infinitely many of these?
38 100 = 2^2 * 5^2
46 121 = 11^2
64 169 = 13^2
97 256 = 2^8
167 441 = 3^2 * 7^2
183 484 = 2^2 * 11^2
200 529 = 23^2
218 576 = 2^6 * 3^2
318 841 = 29^2
437 1156 = 2^2 * 17^2
490 1296 = 2^4 * 3^4
546 1444 = 2^2 * 19^2
575 1521 = 3^2 * 13^2
605 1600 = 2^6 * 5^2
667 1764 = 2^2 * 3^2 * 7^2
699 1849 = 43^2
732 1936 = 2^4 * 11^2
800 2116 = 2^2 * 23^2
835 2209 = 47^2
871 2304 = 2^8 * 3^2
945 2500 = 2^2 * 5^4
1062 2809 = 53^2
1316 3481 = 59^2
1361 3600 = 2^4 * 3^2 * 5^2
1453 3844 = 2^2 * 31^2
1597 4225 = 5^2 * 13^2
1697 4489 = 67^2
1748 4624 = 2^4 * 17^2
2070 5476 = 2^2 * 37^2
2241 5929 = 7^2 * 11^2
2359 6241 = 79^2
2419 6400 = 2^8 * 5^2
2480 6561 = 3^8
2604 6889 = 83^2
2667 7056 = 2^4 * 3^2 * 7^2
2731 7225 = 5^2 * 17^2
2861 7569 = 3^2 * 29^2
2927 7744 = 2^6 * 11^2
2994 7921 = 89^2
3130 8281 = 7^2 * 13^2
3340 8836 = 2^2 * 47^2
3630 9604 = 2^2 * 7^4
3780 10000 = 2^4 * 5^4
4010 10609 = 103^2
4247 11236 = 2^2 * 53^2
4657 12321 = 3^2 * 37^2
5086 13456 = 2^4 * 29^2
5174 13689 = 3^4 * 13^2
5263 13924 = 2^2 * 59^2
5443 14400 = 2^6 * 3^2 * 5^2
5534 14641 = 11^4
5626 14884 = 2^2 * 61^2
5906 15625 = 5^6
6290 16641 = 3^2 * 43^2
6586 17424 = 2^4 * 3^2 * 11^2
6686 17689 = 7^2 * 19^2
6787 17956 = 2^2 * 67^2
6991 18496 = 2^6 * 17^2
7198 19044 = 2^2 * 3^2 * 23^2
7303 19321 = 139^2
7729 20449 = 11^2 * 13^2
7947 21025 = 5^2 * 29^2
8057 21316 = 2^2 * 73^2
8279 21904 = 2^4 * 37^2
8618 22801 = 151^2
8848 23409 = 3^4 * 17^2
8964 23716 = 2^2 * 7^2 * 11^2
9676 25600 = 2^10 * 5^2