Three sum algorithm solution
using itertools
.
import itertools
stuff = [-1, 0, 1, 2, -1, -4]
stuff.sort()
ls = []
for subset in itertools.combinations(stuff, 3):
if sum(list(subset))==0:
# first I have sorted the list because of grouping
# Ex: [-1, 0, 1] and [0, 1, -1] are build with the same element
# so here is avoiding this.
if list(subset) not in ls:
ls.append(list(subset))
print(ls)
input/output
input : [-1, 0, 1, 2, -1, -4]
output : [[-1, -1, 2], [-1, 0, 1]]
input : [-4,-2,-2,-2,0,1,2,2,2,3,3,4,4,6,6]
output: [[-4, -2, 6], [-4, 0, 4], [-4, 1, 3], [-4, 2, 2], [-2, -2, 4], [-2, 0, 2]]
Here's another way of solving it which has O(n^2) time complexity and passes the LeetCode test. It counts the occurrences and then sorts (number, count)
tuples so [-1, 0, 1, 2, -1, -4]
becomes [(-4, 1), (-1, 2), (0, 1), (1, 1), (2, 1)]
. Then it iterates from beginning picking first trying to pick each number twice and third greater if possible and add this to result. Then it picks number once and tries to find two greater numbers which sum to 0.
from collections import Counter
class Solution(object):
def threeSum(self, nums):
res = []
counts = Counter(nums)
num_counts = sorted(counts.items())
# Handle the only case where we pick three same nums
if counts[0] >= 3:
res.append([0] * 3)
for i, (first, first_count) in enumerate(num_counts):
# Pick two of these and one greater
if first_count >= 2 and first < 0 and -(first * 2) in counts:
res.append([first, first, -(first * 2)])
# Pick one and two greater
for j in range(i + 1, len(num_counts)):
second, second_count = num_counts[j]
# Pick two of these as second and third num
if second_count >= 2 and -first == 2 * second:
res.append([first, second, second])
# Pick this as second num and third which is greater
third = -(first + second)
if third > second and third in counts:
res.append([first, second, third])
return res
One of the approach is using the HashSet, What I have try here:
public List<List<Integer>> threeSum(int[] nums) {
Set<List<Integer>> set = new HashSet<>();
Arrays.sort(nums);
for (int i = 0; i < nums.length - 1; i++) {
int j = i + 1;
int k = nums.length - 1;
while (j < k) {
int sum = nums[i] + nums[j] + nums[k];
if (sum == 0) {
set.add(Arrays.asList(nums[i], nums[j++], nums[k--]));
} else if (sum > 0) {
k--;
} else if (sum < 0) {
j++;
}
}
}
return new ArrayList<>(set);
}
}