throwing exceptions out of a destructor

Throwing an exception out of a destructor is dangerous.
If another exception is already propagating the application will terminate.

#include <iostream>

class Bad
{
    public:
        // Added the noexcept(false) so the code keeps its original meaning.
        // Post C++11 destructors are by default `noexcept(true)` and
        // this will (by default) call terminate if an exception is
        // escapes the destructor.
        //
        // But this example is designed to show that terminate is called
        // if two exceptions are propagating at the same time.
        ~Bad() noexcept(false)
        {
            throw 1;
        }
};
class Bad2
{
    public:
        ~Bad2()
        {
            throw 1;
        }
};


int main(int argc, char* argv[])
{
    try
    {
        Bad   bad;
    }
    catch(...)
    {
        std::cout << "Print This\n";
    }

    try
    {
        if (argc > 3)
        {
            Bad   bad; // This destructor will throw an exception that escapes (see above)
            throw 2;   // But having two exceptions propagating at the
                       // same time causes terminate to be called.
        }
        else
        {
            Bad2  bad; // The exception in this destructor will
                       // cause terminate to be called.
        }
    }
    catch(...)
    {
        std::cout << "Never print this\n";
    }

}

This basically boils down to:

Anything dangerous (i.e. that could throw an exception) should be done via public methods (not necessarily directly). The user of your class can then potentially handle these situations by using the public methods and catching any potential exceptions.

The destructor will then finish off the object by calling these methods (if the user did not do so explicitly), but any exceptions throw are caught and dropped (after attempting to fix the problem).

So in effect you pass the responsibility onto the user. If the user is in a position to correct exceptions they will manually call the appropriate functions and processes any errors. If the user of the object is not worried (as the object will be destroyed) then the destructor is left to take care of business.

An example:

std::fstream

The close() method can potentially throw an exception. The destructor calls close() if the file has been opened but makes sure that any exceptions do not propagate out of the destructor.

So if the user of a file object wants to do special handling for problems associated to closing the file they will manually call close() and handle any exceptions. If on the other hand they do not care then the destructor will be left to handle the situation.

Scott Myers has an excellent article about the subject in his book "Effective C++"

Edit:

Apparently also in "More Effective C++"
Item 11: Prevent exceptions from leaving destructors


Throwing out of a destructor can result in a crash, because this destructor might be called as part of "Stack unwinding". Stack unwinding is a procedure which takes place when an exception is thrown. In this procedure, all the objects that were pushed into the stack since the "try" and until the exception was thrown, will be terminated -> their destructors will be called. And during this procedure, another exception throw is not allowed, because it's not possible to handle two exceptions at a time, thus, this will provoke a call to abort(), the program will crash and the control will return to the OS.


We have to differentiate here instead of blindly following general advice for specific cases.

Note that the following ignores the issue of containers of objects and what to do in the face of multiple d'tors of objects inside containers. (And it can be ignored partially, as some objects are just no good fit to put into a container.)

The whole problem becomes easier to think about when we split classes in two types. A class dtor can have two different responsibilities:

  • (R) release semantics (aka free that memory)
  • (C) commit semantics (aka flush file to disk)

If we view the question this way, then I think that it can be argued that (R) semantics should never cause an exception from a dtor as there is a) nothing we can do about it and b) many free-resource operations do not even provide for error checking, e.g. void free(void* p);.

Objects with (C) semantics, like a file object that needs to successfully flush it's data or a ("scope guarded") database connection that does a commit in the dtor are of a different kind: We can do something about the error (on the application level) and we really should not continue as if nothing happened.

If we follow the RAII route and allow for objects that have (C) semantics in their d'tors I think we then also have to allow for the odd case where such d'tors can throw. It follows that you should not put such objects into containers and it also follows that the program can still terminate() if a commit-dtor throws while another exception is active.


With regard to error handling (Commit / Rollback semantics) and exceptions, there is a good talk by one Andrei Alexandrescu: Error Handling in C++ / Declarative Control Flow (held at NDC 2014)

In the details, he explains how the Folly library implements an UncaughtExceptionCounter for their ScopeGuard tooling.

(I should note that others also had similar ideas.)

While the talk doesn't focus on throwing from a d'tor, it shows a tool that can be used today to get rid of the problems with when to throw from a d'tor.

In the future, there may be a std feature for this, see N3614, and a discussion about it.

Upd '17: The C++17 std feature for this is std::uncaught_exceptions afaikt. I'll quickly quote the cppref article:

Notes

An example where int-returning uncaught_exceptions is used is ... ... first creates a guard object and records the number of uncaught exceptions in its constructor. The output is performed by the guard object's destructor unless foo() throws (in which case the number of uncaught exceptions in the destructor is greater than what the constructor observed)