Time complexity of nested for-loop

Yes, nested loops are one way to quickly get a big O notation.

Typically (but not always) one loop nested in another will cause O(n²).

Think about it, the inner loop is executed i times, for each value of i. The outer loop is executed n times.

thus you see a pattern of execution like this: 1 + 2 + 3 + 4 + ... + n times

Therefore, we can bound the number of code executions by saying it obviously executes more than n times (lower bound), but in terms of n how many times are we executing the code?

Well, mathematically we can say that it will execute no more than n² times, giving us a worst case scenario and therefore our Big-Oh bound of O(n²). (For more information on how we can mathematically say this look at the Power Series)

Big-Oh doesn't always measure exactly how much work is being done, but usually gives a reliable approximation of worst case scenario.


4 yrs later Edit: Because this post seems to get a fair amount of traffic. I want to more fully explain how we bound the execution to O(n²) using the power series

From the website: 1+2+3+4...+n = (n² + n)/2 = n²/2 + n/2. How, then are we turning this into O(n²)? What we're (basically) saying is that n² >= n²/2 + n/2. Is this true? Let's do some simple algebra.

  • Multiply both sides by 2 to get: 2n² >= n² + n?
  • Expand 2n² to get:n² + n² >= n² + n?
  • Subtract n² from both sides to get: n² >= n?

It should be clear that n² >= n (not strictly greater than, because of the case where n=0 or 1), assuming that n is always an integer.

Actual Big O complexity is slightly different than what I just said, but this is the gist of it. In actuality, Big O complexity asks if there is a constant we can apply to one function such that it's larger than the other, for sufficiently large input (See the wikipedia page)


Let us trace the number of times each loop executes in each iteration.

for (int i = 1; i <= n; i++){  // outer loop
    for (int j = 1; j <= i; j++){  // inner loop
        // some code
    }
}

In the first iteration of the outer loop (i = 1), the inner loop executes once.

In the second iteration of the outer loop (i = 2), the inner loop executes twice.

In the third iteration of the outer loop (i = 3), the inner loop executes thrice.

So, in the last iteration of the outer loop (i = n), the inner loop executes n times.

Therefore, the total number of times this code executes is

1 + 2 + 3 + … + n

= (n(n + 1) / 2) (Sum of Natural Numbers Formula)

= (((n^2) + n) / 2)

= O(n^2)

——————

Also, do take a look at these

  1. https://stackoverflow.com/a/71805214/17112163
  2. https://stackoverflow.com/a/71537431/17112163
  3. https://stackoverflow.com/a/69821878/17112163
  4. https://stackoverflow.com/a/72046825/17112163
  5. https://stackoverflow.com/a/72046933/17112163

A quick way to explain this is to visualize it.

if both i and j are from 0 to N, it's easy to see O(N^2)

O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O

in this case, it's:

O
O O
O O O
O O O O
O O O O O
O O O O O O
O O O O O O O
O O O O O O O O

This comes out to be 1/2 of N^2, which is still O(N^2)


Indeed, it is O(n^2). See also a very similar example with the same runtime here.