Topological Sorting code example
Example 1: topological sorting
int n; // number of vertices
vector<vector<int>> adj; // adjacency list of graph
vector<bool> visited;
vector<int> ans;
void dfs(int v) {
visited[v] = true;
for (int u : adj[v]) {
if (!visited[u])
dfs(u);
}
ans.push_back(v);
}
void topological_sort() {
visited.assign(n, false);
ans.clear();
for (int i = 0; i < n; ++i) {
if (!visited[i])
dfs(i);
}
reverse(ans.begin(), ans.end());
}
Example 2: topological sort
void dfs_helper(T src, map<int,bool>& visited, list<T> &ordering) {
//Recursive function that will traverse the graph
visited[src] = true;
//go to all nbr of that node that is not visited
for(T nbr:l[src]) {
if(!visited[nbr]) {
dfs_helper(src,visited,ordering);
}
}
ordering.push_front(src);
}
int dfs(T src) {
map<int,bool> visited;
list<T> ordering;
//Mark all nodes as not visited.
//l = adjacency list implemented using std::unordered_map
for(auto p:l) {
T node = p.first;
visited[node] = false;
}
for(auto p:l) {
T node = p.first;
if(!visited[node]) {
dfs_helper(node,visited,ordering);
}
}
//Finally print the list
for(auto node:ordering) {
cout << node << endl;
}
}
Example 3: Topological sort
L ← Empty list that will contain the sorted nodes
while exists nodes without a permanent mark do
select an unmarked node n
visit(n)
function visit(node n)
if n has a permanent mark then
return
if n has a temporary mark then
stop (not a DAG)
mark n with a temporary mark
for each node m with an edge from n to m do
visit(m)
remove temporary mark from n
mark n with a permanent mark
add n to head of L
Example 4: topological sort
def topological_sort():
for each node:
if visited[node] is False:
dfs(node)
def dfs(node):
visited[node] = True
for nei in neighbours[node]:
dfs(node)
ret.insert_at_the _front(node)