Transfer values from one dataframe to another
Using data.table
:
require(data.table)
dt1 <- data.table(df1, key="id")
dt2 <- data.table(df2)
dt1[dt2$id, value]
# id value
# 1: 1 1.000000
# 2: 2 6.210526
# 3: 3 11.421053
# 4: 4 16.631579
# 5: 5 21.842105
# 6: 21 NA
# 7: 22 NA
# 8: 23 NA
or using base merge
as @TheodoreLytras mentioned under comment:
# you don't need to have `v2` column in df2
merge(df2, df1, by="id", all.x=T, sort=F)
# id v2 value
# 1 1 NA 1.000000
# 2 2 NA 6.210526
# 3 3 NA 11.421053
# 4 4 NA 16.631579
# 5 5 NA 21.842105
# 6 21 NA NA
# 7 22 NA NA
# 8 23 NA NA
One way to do this using merge()
:
df2Needed <- merge(df2,df1,by="id",all.x=TRUE, sort=FALSE)
df2Needed <- df2Needed[,c("id","value")]
colNames(df2Needed) <- c("id","v2")
and another (more elegant, I think) using match()
:
df2Needed <- df2
df2Needed$v2 <- df1$value[match(df2$id, df1$id)]
Using LEFT join sql
with sqldf
library(sqldf)
sqldf('SELECT df2.id , df1.value
FROM df2
LEFT JOIN df1
ON df2.id = df1.id')
id value
1 1 1.000000
2 2 6.210526
3 3 11.421053
4 4 16.631579
5 5 21.842105
6 21 NA
7 22 NA
8 23 NA
EDIT add some benchamrking:
The match as expected is very fast here. sqldf is really slow!
Test on the OP data
library(microbenchmark)
microbenchmark(ag(),ar.dt(),ar.me(),tl())
Unit: microseconds
expr min lq median uq max
1 ag() 23071.953 23536.1680 24053.8590 26889.023 34256.354
2 ar.dt() 3123.972 3284.5890 3348.1155 3523.333 7740.335
3 ar.me() 950.807 1015.2815 1095.1160 1128.112 6330.243
4 tl() 41.340 45.8915 68.0785 71.112 187.735
Test with big data 1E6 rows of data.
here how I generate my data:
N <- 1e6
df1 <- data.frame(id=as.character(1:N),
value=seq(1, 100),
stringsAsFactors=F)
n2 <- 1000
df2 <- data.frame(id=sample(df1$id,n2),
v2=NA,
stringsAsFactors=F)
Surprise !! merge is 16 times faster than sqldf and data.table solution is the slowest one!
Unit: milliseconds
expr min lq median uq max
1 ag() 5678.0580 5865.3063 6034.9151 6214.3664 8084.6294
2 ar.dt() 8373.6083 8612.9496 8867.6164 9104.7913 10423.5247
3 ar.me() 387.4665 451.0071 506.8269 648.3958 1014.3099
4 tl() 174.0375 186.8335 214.0468 252.9383 667.6246
Where the function ag, ar.dt,ar.me, tl are defined by :
ag <- function(){
require(sqldf)
sqldf('SELECT df2.id , df1.value
FROM df2
LEFT JOIN df1
ON df2.id = df1.id')
}
ar.dt <- function(){
require(data.table)
dt1 <- data.table(df1, key="id")
dt2 <- data.table(df2)
dt1[dt2$id, value]
}
ar.me <- function(){
merge(df2, df1, by="id", all.x=T, sort=F)
}
tl <- function(){
df2Needed <- df2
df2Needed$v2 <- df1$value[match(df2$id, df1$id)]
}
EDIT 2
It seems that including the data.table creation in the benchmarking it a little bit unfair
. To avoid any confusion , I add a new function where I suppose that I have already data.table structures.
ar.dtLight <- function(){
dt1[dt2$id, value]
}
library(microbenchmark)
microbenchmark(ag(),ar.dt(),ar.me(),tl(),ar.dtLight,times=1)
Unit: microseconds
expr min lq median uq max
1 ag() 7247593.591 7247593.591 7247593.591 7247593.591 7247593.591
2 ar.dt() 8543556.967 8543556.967 8543556.967 8543556.967 8543556.967
3 ar.dtLight 1.139 1.139 1.139 1.139 1.139
4 ar.me() 462235.106 462235.106 462235.106 462235.106 462235.106
5 tl() 201988.996 201988.996 201988.996 201988.996 201988.996
It seems that the creation of the keys (indexes) is the time consuming. But once the indexes are created data.table
method is unbeatable.