Triangles in a tetrahedron

Rust, \$A(1), \dotsc, A(1375)\$ in 10 minutes

Unofficial score on Ryzen 7 1800X (8 cores/16 threads). Build with cargo build --release and run with time target/release/tetrahedron n to compute \$A(1), \dotsc, A(n)\$.

This runs in \$O(n^4)\$ time. (So to estimate a good value of \$n\$ for your CPU, first time it for some smaller \$n\$, then multiply that \$n\$ by a factor of \$\left(\frac{600\,\mathrm{s}}{t}\right)^{1/4}\$.)

How it works

Any triangle that fits inside a tetrahedron of minimal side \$k \le n\$ may be translated inside a tetrahedron of side \$n\$ in exactly \$\binom{n - k + 3}{3}\$ ways. This means we only need to find it in one position, leaving six free parameters. Two of these parameters may be computed from the other four (up to a sign choice) if the triangle is to be equilateral, so we only need to loop over an \$O(n^4)\$ space.

src/main.rs

use rayon::prelude::*;

fn get_counts(n: i64, a0: i64) -> Vec<i64> {
    let mut c = vec![0; n as usize];
    let a0a0 = a0 * a0;
    for a1 in if a0 == 0 { 1 } else { -n + 1 }..n {
        let d = a0a0 + a1 * a1;
        let m = n - a0.abs() - a1.abs();
        for a2 in if m > 0 {
            -n + 2 - (m & 1)..n
        } else {
            -n - m + 2..n + m
        }
        .step_by(2)
        {
            let d = d + a2 * a2;
            let r = 2 * (a0a0 - d);
            if r == 0 {
                continue;
            }
            for b0 in a0..n {
                let pp = d * (3 * d - 4 * (a0a0 + b0 * (b0 - a0)));
                if pp < 0 {
                    break;
                }
                let p = (pp as f64).sqrt() as i64;
                if p * p != pp {
                    continue;
                }
                let q = 2 * a0 * b0 - d;
                let mut check = |p: i64| {
                    let b1r = p * a2 + q * a1;
                    if b1r % r != 0 {
                        return;
                    }
                    let b1 = b1r / r;
                    let b2r = -p * a1 + q * a2;
                    if b2r % r != 0 {
                        return;
                    }
                    let b2 = b2r / r;
                    if (b0, b1, b2) <= (a0, a1, a2) || b0 + b1 + b2 & 1 != 0 {
                        return;
                    }
                    let t = 0.max(a0 + a1 + a2).max(b0 + b1 + b2)
                        + 0.max(-a0 - a1 + a2).max(-b0 - b1 + b2)
                        + 0.max(-a0 + a1 - a2).max(-b0 + b1 - b2)
                        + 0.max(a0 - a1 - a2).max(b0 - b1 - b2);
                    if t >= 2 * n {
                        return;
                    }
                    c[t as usize / 2] += 1;
                };
                check(p);
                if p != 0 {
                    check(-p);
                }
            }
        }
    }
    c
}

fn add_vec(c0: Vec<i64>, c1: Vec<i64>) -> Vec<i64> {
    c0.into_iter().zip(c1).map(|(x0, x1)| x0 + x1).collect()
}

fn main() {
    let n = std::env::args().skip(1).next().expect("missing argument");
    let n = n.parse().expect("not an integer");
    let counts = (0..n)
        .into_par_iter()
        .map(|a0| get_counts(n, a0))
        .reduce(|| vec![0; n as usize], add_vec);
    let (mut d0, mut d1, mut d2, mut d3) = (0, 0, 0, 0);
    for (i, x) in (1..).zip(counts) {
        d3 += x;
        d2 += d3;
        d1 += d2;
        d0 += d1;
        println!("{} {}", i, d0);
    }
}

Cargo.toml

[package]
name = "tetrahedron"
version = "0.1.0"
authors = ["Anders Kaseorg <[email protected]>"]
edition = "2018"

[dependencies]
rayon = "1.3.0"

Try it online! (Parallelism removed for TIO.)


C++, all up to 40 in ten minutes

Runs in \$O(n^9)\$ time complexity (fortunately, it seems to be divided by at least 36 and it's also multi-threaded). I tested on Ubuntu 19.10 on AMD Ryzen 5 2600 (12 threads), tested with clang++ -Ofast -march=native -flto -no-pie -fopenmp and ran with timeout 600 ./a.out.

Code:

//#define _GLIBCXX_DEBUG
#include <iostream>
#include <cstring>
#include <complex>
#include <streambuf>
#include <bitset>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cmath>
#include <climits>
#include <random>
#include <set>
#include <list>
#include <map>
#include <deque>
#include <stack>
#include <queue>
#include <string>
#include <iomanip>
#include <unordered_set>
#include <thread>

struct pt3
{
    short x, y, z;
    bool operator < (const pt3& rhs) const
    {
        return std::tie(x, y, z) < std::tie(rhs.x, rhs.y, rhs.z);
    }
    pt3 operator - (const pt3& rhs) const
    {
        return {short(x - rhs.x), short(y - rhs.y), short(z - rhs.z)};
    }
    int sqdist() const
    {
        return int(x)*int(x) + int(y)*int(y) + int(z)*int(z);
    }
};
int solve(int n)
{
    //the several lines below took a lot of tinkering-until-it-works
    std::set<pt3> pt3s;
    for(int i = 0; i < n; i++)
    for(int j = 0; j < n; j++)
    for(int k = 0; k < n; k++)
    {
        if(i+j+k >= n) continue;
        pt3 pt { short(i+j), short(j+k), short(i+k) };
        pt3s.insert(pt);
    }
    std::vector<pt3> points; //copy into a vector, they're much faster for this
    for(pt3 el : pt3s) points.push_back(el);

    //printf("n=%d, ps=%d\n", n, points.size());
    int64_t ans = 0;
#pragma omp parallel for schedule(guided) reduction(+:ans)
    for(int i = 0; i < points.size(); i++)
    for(int j = i + 1; j < points.size(); j++)
    for(int k = j + 1; k < points.size(); k++)
    {
        pt3 a = points[i], b = points[j], c = points[k];
        //consider pairwise distances
        pt3 p1 = a-b, p2 = a-c, p3 = b-c; //33% of all time
        int d1 = p1.sqdist(), d2 = p2.sqdist(), d3 = p3.sqdist(); //another 33% of all time
        if(d1 != d2 || d1 != d3) continue;
        ans++;
        //printf("%d %d %d; %d %d %d; %d %d %d\n", p1.x, p1.y, p1.z, p2.x, p2.y, p2.z, p3.x, p3.y, p3.z);
    }
    return ans;
}
int main()
{
    for(int i = 1;; i++)
    {
        int ans = solve(i);
        printf("n=%d: %d\n", i, ans);
    }
}

Output:

n=1: 0
n=2: 4
n=3: 24
n=4: 84
n=5: 224
n=6: 516
n=7: 1068
n=8: 2016
n=9: 3528
n=10: 5832
n=11: 9256
n=12: 14208
n=13: 21180
n=14: 30728
n=15: 43488
n=16: 60192
n=17: 81660
n=18: 108828
n=19: 142764
n=20: 184708
n=21: 236088
n=22: 298476
n=23: 373652
n=24: 463524
n=25: 570228
n=26: 696012
n=27: 843312
n=28: 1014720
n=29: 1213096
n=30: 1441512
n=31: 1703352
n=32: 2002196
n=33: 2341848
n=34: 2726400
n=35: 3160272
n=36: 3648180
n=37: 4195164
n=38: 4806496
n=39: 5487792
n=40: 6244992

JavaScript (ES7), a(30) in ~50 seconds1

1: when run locally on my laptop

A very simple algorithm.

function count(n) {
  const r0 = (8 / 3) ** 0.5, r1 = 2 / 3, r2 = 3 ** 0.5;
  let cnt = 0;

  for(let z1 = 0; z1 < n; z1++)
  for(let Z1 = z1 * r0,
          y1 = 0; y1 <= z1; y1++)
  for(let Y1 = (y1 - z1 * r1) * r2,
          x1 = 0; x1 <= y1; x1++)
  for(let X1 = 2 * x1 - y1,
          z2 = z1; z2 < n; z2++)
  for(let Z2 = z2 * r0,
          y2 = z2 > z1 ? 0 : y1; y2 <= z2; y2++)
  for(let Y2 = (y2 - z2 * r1) * r2,
          x2 = z2 > z1 || y2 > y1 ? 0 : x1 + 1; x2 <= y2; x2++)
  for(let X2 = 2 * x2 - y2,
          S1 = (X1 - X2) ** 2 + (Y1 - Y2) ** 2 + (Z1 - Z2) ** 2,
          z3 = z2; z3 < n; z3++)
  for(let Z3 = z3 * r0,
          y3 = z3 > z2 ? 0 : y2; y3 <= z3; y3++)
  for(let Y3 = (y3 - z3 * r1) * r2,
          x3 = z3 > z2 || y3 > y2 ? 0 : x2 + 1; x3 <= y3; x3++) {
    let X3 = 2 * x3 - y3,
        S2 = (X1 - X3) ** 2 + (Y1 - Y3) ** 2 + (Z1 - Z3) ** 2;

    if(Math.abs(S1 - S2) < 1e-9) {
      let S3 = (X2 - X3) ** 2 + (Y2 - Y3) ** 2 + (Z2 - Z3) ** 2;

      if(Math.abs(S1 - S3) < 1e-9) {
        cnt++;
      }
    }
  }
  return cnt;
}

Try it online!