sns python code example

Example 1: plot histogram in seaborn

sns.distplot(gapminder['lifeExp'], kde=False, color='red', bins=100)
plt.title('Life Expectancy', fontsize=18)
plt.xlabel('Life Exp (years)', fontsize=16)
plt.ylabel('Frequency', fontsize=16)

Example 2: distribution seaborn

x = np.random.normal(size=100)
sns.distplot(x);

Example 3: scatter density plot seaborn

>>> iris = sns.load_dataset("iris")
>>> g = sns.jointplot("sepal_width", "petal_length", data=iris,
...                   kind="kde", space=0, color="g")

Example 4: mean =[0,0] covariance = [[1,0],[0,100]] ds = np.random.multivariate_normal(mean,covariance,500) dframe = pd.DataFrame(ds, columns=['col1', 'col2']) fig = sns.kdeplot(dframe).get_figure() fig.savefig('kde1.png')

mean =[0,0]
covariance = [[1,0],[0,100]]

ds = np.random.multivariate_normal(mean,covariance,500)

dframe = pd.DataFrame(ds, columns=['col1', 'col2'])

fig = sns.kdeplot(dframe).get_figure()
fig.savefig('kde1.png')

Example 5: distplot for 2 columns

import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
import seaborn as sns

iris = load_iris()
iris = pd.DataFrame(data=np.c_[iris['data'], iris['target']],
                    columns=iris['feature_names'] + ['target'])

# Sort the dataframe by target
target_0 = iris.loc[iris['target'] == 0]
target_1 = iris.loc[iris['target'] == 1]
target_2 = iris.loc[iris['target'] == 2]

sns.distplot(target_0[['sepal length (cm)']], hist=False, rug=True)
sns.distplot(target_1[['sepal length (cm)']], hist=False, rug=True)
sns.distplot(target_2[['sepal length (cm)']], hist=False, rug=True)

sns.plt.show()