Unable to solve $ \int \frac{x + \sqrt{2}}{x^2 + \sqrt{2} x + 1} dx $?
The hint: $$\frac{x+\sqrt2}{x^2+\sqrt2x+1}=\frac{x+\frac{1}{\sqrt2}+\frac{1}{\sqrt2}}{x^2+\sqrt2x+1}$$ and use $\ln$ and $\arctan$.
The hint: $$\frac{x+\sqrt2}{x^2+\sqrt2x+1}=\frac{x+\frac{1}{\sqrt2}+\frac{1}{\sqrt2}}{x^2+\sqrt2x+1}$$ and use $\ln$ and $\arctan$.