Unique (non-repeating) random numbers in O(1)?
Initialize an array of 1001 integers with the values 0-1000 and set a variable, max, to the current max index of the array (starting with 1000). Pick a random number, r, between 0 and max, swap the number at the position r with the number at position max and return the number now at position max. Decrement max by 1 and continue. When max is 0, set max back to the size of the array - 1 and start again without the need to reinitialize the array.
Update: Although I came up with this method on my own when I answered the question, after some research I realize this is a modified version of Fisher-Yates known as Durstenfeld-Fisher-Yates or Knuth-Fisher-Yates. Since the description may be a little difficult to follow, I have provided an example below (using 11 elements instead of 1001):
Array starts off with 11 elements initialized to array[n] = n, max starts off at 10:
+--+--+--+--+--+--+--+--+--+--+--+
| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9|10|
+--+--+--+--+--+--+--+--+--+--+--+
^
max
At each iteration, a random number r is selected between 0 and max, array[r] and array[max] are swapped, the new array[max] is returned, and max is decremented:
max = 10, r = 3
+--------------------+
v v
+--+--+--+--+--+--+--+--+--+--+--+
| 0| 1| 2|10| 4| 5| 6| 7| 8| 9| 3|
+--+--+--+--+--+--+--+--+--+--+--+
max = 9, r = 7
+-----+
v v
+--+--+--+--+--+--+--+--+--+--+--+
| 0| 1| 2|10| 4| 5| 6| 9| 8| 7: 3|
+--+--+--+--+--+--+--+--+--+--+--+
max = 8, r = 1
+--------------------+
v v
+--+--+--+--+--+--+--+--+--+--+--+
| 0| 8| 2|10| 4| 5| 6| 9| 1: 7| 3|
+--+--+--+--+--+--+--+--+--+--+--+
max = 7, r = 5
+-----+
v v
+--+--+--+--+--+--+--+--+--+--+--+
| 0| 8| 2|10| 4| 9| 6| 5: 1| 7| 3|
+--+--+--+--+--+--+--+--+--+--+--+
...
After 11 iterations, all numbers in the array have been selected, max == 0, and the array elements are shuffled:
+--+--+--+--+--+--+--+--+--+--+--+
| 4|10| 8| 6| 2| 0| 9| 5| 1| 7| 3|
+--+--+--+--+--+--+--+--+--+--+--+
At this point, max can be reset to 10 and the process can continue.
You can do this:
- Create a list, 0..1000.
- Shuffle the list. (See Fisher-Yates shuffle for a good way to do this.)
- Return numbers in order from the shuffled list.
So this doesn't require a search of old values each time, but it still requires O(N) for the initial shuffle. But as Nils pointed out in comments, this is amortised O(1).
Use a Maximal Linear Feedback Shift Register.
It's implementable in a few lines of C and at runtime does little more than a couple test/branches, a little addition and bit shifting. It's not random, but it fools most people.