Use a simple model on data to create a confusion matrix. Compute the accuracy, precision, sensitivity, specificity, F-score, and G-score. code example
Example 1: import sklearn.metrics from plot_confusion_matrix
from sklearn.metrics import plot_confusion_matrix
Example 2: from sklearn.metrics import confusion_matrix pred = model.predict(X_test) pred = np.argmax(pred,axis = 1) y_true = np.argmax(y_test,axis = 1)
from sklearn.metrics import confusion_matrix
pred = model.predict(X_test)
pred = np.argmax(pred,axis = 1)
y_true = np.argmax(y_test,axis = 1)