Using explicit (predefined) validation set for grid search with sklearn

Consider using the hypopt Python package (pip install hypopt) for which I am an author. It's a professional package created specifically for parameter optimization with a validation set. It works with any scikit-learn model out-of-the-box and can be used with Tensorflow, PyTorch, Caffe2, etc. as well.

# Code from https://github.com/cgnorthcutt/hypopt
# Assuming you already have train, test, val sets and a model.
from hypopt import GridSearch
param_grid = [
  {'C': [1, 10, 100], 'kernel': ['linear']},
  {'C': [1, 10, 100], 'gamma': [0.001, 0.0001], 'kernel': ['rbf']},
 ]
# Grid-search all parameter combinations using a validation set.
opt = GridSearch(model = SVR(), param_grid = param_grid)
opt.fit(X_train, y_train, X_val, y_val)
print('Test Score for Optimized Parameters:', opt.score(X_test, y_test))

EDIT: I (think I) received -1's on this response because I'm suggesting a package that I authored. This is unfortunate, given that the package was created specifically to solve this type of problem.


Use PredefinedSplit

ps = PredefinedSplit(test_fold=your_test_fold)

then set cv=ps in GridSearchCV

test_fold : “array-like, shape (n_samples,)

test_fold[i] gives the test set fold of sample i. A value of -1 indicates that the corresponding sample is not part of any test set folds, but will instead always be put into the training fold.

Also see here

when using a validation set, set the test_fold to 0 for all samples that are part of the validation set, and to -1 for all other samples.