Using plt.imshow() to display multiple images
In first instance, load the image from file into a numpy matrix
from typing import Union,List
import numpy
import cv2
import os
def load_image(image: Union[str, numpy.ndarray]) -> numpy.ndarray:
# Image provided ad string, loading from file ..
if isinstance(image, str):
# Checking if the file exist
if not os.path.isfile(image):
print("File {} does not exist!".format(imageA))
return None
# Reading image as numpy matrix in gray scale (image, color_param)
return cv2.imread(image, 0)
# Image alredy loaded
elif isinstance(image, numpy.ndarray):
return image
# Format not recognized
else:
print("Unrecognized format: {}".format(type(image)))
print("Unrecognized format: {}".format(image))
return None
Then you can plot multiple image using the following method:
import matplotlib.pyplot as plt
def show_images(images: List[numpy.ndarray]) -> None:
n: int = len(images)
f = plt.figure()
for i in range(n):
# Debug, plot figure
f.add_subplot(1, n, i + 1)
plt.imshow(images[i])
plt.show(block=True)
The show_images
method take in input a list of images that you can read iteratively using the load_image
method.
You can set up a framework to show multiple images using the following:
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
def process(filename: str=None) -> None:
"""
View multiple images stored in files, stacking vertically
Arguments:
filename: str - path to filename containing image
"""
image = mpimg.imread(filename)
# <something gets done here>
plt.figure()
plt.imshow(image)
for file in images:
process(file)
This will stack the images vertically
To display the multiple images use subplot()
plt.figure()
#subplot(r,c) provide the no. of rows and columns
f, axarr = plt.subplots(4,1)
# use the created array to output your multiple images. In this case I have stacked 4 images vertically
axarr[0].imshow(v_slice[0])
axarr[1].imshow(v_slice[1])
axarr[2].imshow(v_slice[2])
axarr[3].imshow(v_slice[3])