Using RSolve for recurrence equation
You are missing the initial condition Q[0] == Q0
.
Q[k] /. RSolve[{Q[k] == Q[k - 1] + α (Subscript[r, k] - Q[k - 1]), Q[0] == Q0},
Q[k], k][[1]] // FullSimplify
This is equivalent to
$$(1-\alpha )^k Q0+\sum _{K[1]=1}^k \alpha\ (1-\alpha )^{k-K[1]}\ r_{K[1]}$$
Clear["Global`*"]
Format[Q[k_]] := Subscript[Q, k];
Format[Q0] = Subscript[Q, 0];
Include the initial condition in RSolve
sol = (RSolve[
{Q[k] == Q[k - 1] + \[Alpha] (Subscript[r, k] - Q[k - 1]), Q[0] == Q0},
Q[k], k][[1]] // Simplify) /. K[1] -> i
Translate the index of summation
sol2 = ((sol /. Sum -> Inactive[Sum]) /.
Inactive[Sum][expr_, {i, imin_, imax_}] :>
Inactive[Sum][(expr /. i -> i - 1), {i, imin + 1, imax + 1}]) //
Collect[#, Q0] &
Simplify the summation term
(sol3 = sol2 /. (expr1_ * Inactive[Sum][expr2_, {i, imin_, imax_}]) :>
Inactive[Sum][expr1*expr2, {i, imin, imax}]) // Activate