Value of an integral
The integral can be rewritten as \begin{align*} I&=\frac{n(n-1)}{2}\int_0^1\frac{t^{n-2}(2-t)^{n+1}-t^{2n-1}}{n+1}-\frac{t^n(2-t)^{n-1}-t^{2n-1}}{n-1}\,dt\\[6pt] &=\frac{1}{2n+2}+\frac{n(n-1)}{2}\int_0^1\frac{t^{n-2}(2-t)^{n+1}}{n+1}-\frac{t^n(2-t)^{n-1}}{n-1}\,dt. \end{align*} Integrating by parts, we obtain $$\int_0^1\frac{t^{n-2}(2-t)^{n+1}}{n+1}\,dt=\frac{1}{n^2-1}+\int_0^1\frac{t^{n-1}(2-t)^n}{n-1}\,dt.$$ Therefore, \begin{align*} I&=\frac{1}{2}+\frac{n}{2}\int_0^1t^{n-1}(2-t)^n-t^n(2-t)^{n-1}\,dt\\[6pt] &=\frac{1}{2}+\frac{1}{2}\int_0^1(t^n(2-t)^n)'\,dt=\frac{1}{2}+\frac{1}{2}=1. \end{align*}
P.S. You can use SageMath and WolframAlpha for symbolic calculations. Both are free.
It seems your conjecture is true. Mathematica gives the result $$ (1 + 4^n (-1 + n) n \mbox{Beta} [1/2, -1 + n, 2 + n] - 4^n n (1 + n) \mbox{Beta} [1/2, 1 + n, n])/(2 (1 + n)) $$ in terms of the incomplete Beta function, and putting in random integers $\geq 3$ always yields 1 (I haven't managed to get Mathematica to spit that out as a general result for arbitrary $n$).
You can use CoCalc.
For instance, type
integral(x^2,x)
and get
1/3*x^3
It also permits symbolic parameters.
Input:
f(x,n)=x^2+n
integral(f(x,n),x)
Output:
1/3*x^3+n*x