ValueError: setting an array element with a sequence
The Python ValueError:
ValueError: setting an array element with a sequence.
Means exactly what it says, you're trying to cram a sequence of numbers into a single number slot. It can be thrown under various circumstances.
1. When you pass a python tuple or list to be interpreted as a numpy array element:
import numpy
numpy.array([1,2,3]) #good
numpy.array([1, (2,3)]) #Fail, can't convert a tuple into a numpy
#array element
numpy.mean([5,(6+7)]) #good
numpy.mean([5,tuple(range(2))]) #Fail, can't convert a tuple into a numpy
#array element
def foo():
return 3
numpy.array([2, foo()]) #good
def foo():
return [3,4]
numpy.array([2, foo()]) #Fail, can't convert a list into a numpy
#array element
2. By trying to cram a numpy array length > 1 into a numpy array element:
x = np.array([1,2,3])
x[0] = np.array([4]) #good
x = np.array([1,2,3])
x[0] = np.array([4,5]) #Fail, can't convert the numpy array to fit
#into a numpy array element
A numpy array is being created, and numpy doesn't know how to cram multivalued tuples or arrays into single element slots. It expects whatever you give it to evaluate to a single number, if it doesn't, Numpy responds that it doesn't know how to set an array element with a sequence.
Possible reason 1: trying to create a jagged array
You may be creating an array from a list that isn't shaped like a multi-dimensional array:
numpy.array([[1, 2], [2, 3, 4]]) # wrong!
numpy.array([[1, 2], [2, [3, 4]]]) # wrong!
In these examples, the argument to numpy.array
contains sequences of different lengths. Those will yield this error message because the input list is not shaped like a "box" that can be turned into a multidimensional array.
Possible reason 2: providing elements of incompatible types
For example, providing a string as an element in an array of type float
:
numpy.array([1.2, "abc"], dtype=float) # wrong!
If you really want to have a NumPy array containing both strings and floats, you could use the dtype object
, which allows the array to hold arbitrary Python objects:
numpy.array([1.2, "abc"], dtype=object)