Variational derivation of wave equation (Euler-Lagrange equation)
In this case you have $q=u$ is a single function of two variables $(x_1,x_2)=(t,x)$, so Euler-Lagrange takes the form $$ \dfrac{\partial\mathcal{L}}{\partial q}=\sum_{j=1}^{2}\frac{\partial}{\partial x_j}\left(\frac{\partial\mathcal{L}}{\partial q_{,j}}\right) $$ where $q_{,j}=\dfrac{\partial q}{\partial x_j}$.
In other words, it is $$ \dfrac{\partial\mathcal{L}}{\partial q}=\frac{\partial}{\partial t}\left(\frac{\partial\mathcal{L}}{\partial u_t}\right)+\frac{\partial}{\partial x}\left(\frac{\partial\mathcal{L}}{\partial u_x}\right). $$