Velocity of an satellite in an elliptical orbit
The semi-major axis equals to $\dfrac{a+b}{2}$ where $a<b$.
By vis-viva equation,
$$v^2=2GM\left( \frac{1}{r}-\frac{1}{a+b} \right)$$
At perigee ($r=a$),
$$v_a=\sqrt{\frac{2GMb}{a(a+b)}}$$
At apogee ($r=b$),
$$v_b=\sqrt{\frac{2GMa}{b(a+b)}}$$
Both total energy and angular momentum are conserved.
See the link here for further information.