Volumes and moments of inertia of meshes in 3D

When Mathematica gives correct surface area and volume of zero, what you have is 2-manifold embedded in 3D space, not a solid. It is like the difference between a Sphere and Ball.

Area[Sphere[]]

4 π

Volume[Sphere[]]

0

Area[Ball[]]

Volume[Ball[]]

(4 π)/3

Area[RegionBoundary[Ball[]]]

4 π

Update

box = 
  MeshRegion[
    {{1., -3., -2.}, {1., -3., 2.}, {-1., -3., 2.}, {-1., -3., -2.}, 
     {1., 3., -2.}, {-1., 3., -2.}, {-1., 3., 2.}, {1., 3., 2.}},
    {Polygon[
      {{1, 3, 4}, {5, 7, 8}, {1, 8, 2}, {2, 7, 3}, {3, 6, 4}, {5, 4, 6}, 
       {3, 1, 2}, {7, 5, 6}, {8, 1, 5}, {7, 2, 8}, {6, 3, 7}, {4, 5, 1}}]}]

 RegionDimension @ box

2

This confirms you have a hollow box; a solid brick would give 3.

2nd Update

You can generate a brick from a box with DelaunayMesh.

brick = DelaunayMesh @ MeshCoordinates[box]

RegionDimension @ brick

3

Volume[brick]

48

MomentOfInertia[brick] // Chop

{{208., 0, 0}, {0, 80., 0}, {0, 0, 160.}}


If the mesh is a triangle mesh, the "Stokes theorem" can be applied in the following way:

M = Import["https://filebin.ca/3TcNMJskChjW/one_two_three_cuboid.obj"];
With[{triangles = Partition[MeshCoordinates[M][[Flatten[MeshCells[M, 2][[All, 1]]]]], 3]},
 Total[Det /@ triangles]/6.
]
(* 48. *)

But the easiest way will be to transform your mesh into a BoundaryMeshRegion.

B = BoundaryMeshRegion[MeshCoordinates[M], MeshCells[M, 2]];
Volume[B]
MomentOfInertia[B]
(* 48. *)
(* {{208., 3.74847*10^-6, -3.57628*10^-6}, {3.74847*10^-6,80., -6.49028*10^-6}, {-3.57628*10^-6, -6.49028*10^-6, 160.}} *)

You can import OBJ files directly as BoundaryMeshRegion's

In[5]:= RegionDimension@Import["https://filebin.ca/3TcNMJskChjW/one_two_three_cuboid.obj",
  "BoundaryMeshRegion"]
Out[5]= 3

This is documented on ref/format/OBJ.