What do the symbols d/dx and dy/dx mean?
The symbol $$ \frac{dy}{dx} $$ means the derivative of $y$ with respect to $x$. If $y = f(x)$ is a function of $x$, then the symbol is defined as $$ \frac{dy}{dx} = \lim_{h\to 0}\frac{f(x+h) - f(x)}{h}. $$ and this is is (again) called the derivative of $y$ or the derivative of $f$. Note that it again is a function of $x$ in this case. Note that we do not here define this as $dy$ divided by $dx$. On their own $dy$ and $dx$ don't have any meaning (here). We take $\frac{dy}{dx}$ as a symbol on its own that can't be slit up into parts.
The symbol $$ \frac{d}{dx} $$ you can consider as an operator. You can apply this operator to a (differentiable) function. And you get a new function. So if $f$ is a (differentiable) function that it makes sense to "apply" $\frac{d}{dx}$ to $f$ and write $$ \frac{d}{dx}f $$ If you write $y = f(x)$, then this is the same as $$ \frac{d}{dx}y = \frac{dy}{dx}. $$
$\frac{d}{dx}$ means differentiate with respect to $x$.
$\frac{dy}{dx}$ means differentiate $y$ with respect to $x$.
Do you have any concrete examples for which you need to calculate these two? It would probably make it more easy to grasp for you if I could explain it in a few examples.