What does opt.apply_gradients() do in TensorFlow?

The update rule that the apply_gradients method actually applies depends on the specific optimizer. Take a look at the implementation of apply_gradients in the tf.train.Optimizer class here. It relies on the derived classes implementing the update rule in the methods _apply_dense and _apply_spares. The update rule you are referring to is implemented by the GradientDescentOptimizer.

Regarding your desired positive additive update: If what you are calling opt is an instantiation of GradientDescentOptimizer, then you could indeed achieve what you want to do by

grads_and_vars = opt.compute_gradients(E, [v])
eta = opt._learning_rate
my_grads_and_vars = [(g-(1/eta)*p, v) for g, v in grads_and_vars]
opt.apply_gradients(my_grads_and_vars)

The more elegant way to do this is probably to write a new optimizer (inheriting from tf.train.Optimizer) that implements your desired update rule directly.


You can also use eager execution API.

import tensorflow as tf
tf.enable_eager_execution()
tfe = tf.contrib.eager
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
grad = tfe.implicit_gradients(loss)
optimizer.apply_gradients(grad(model_fn, val_list))

I will make an instance for it as follow:

import tensorflow as tf
tf.enable_eager_exeuction()
tfe = tf.contrib.eager

W = tfe.Variable(np.random.randn())
b = tfe.Variable(np.random.randn())

def linear_regression(inputs):
    return inputs * W + b;

def MSE(model_fn, inputs, labels):
    return tf.reduce_sum(tf.pow(model_fn(inputs) - labels, 2)) / (2 * n_samples)

optimizer = tf.train.GradientDescentOptimizer(learning_rate = 0.001)
grad = tfe.implicit_gradients(MSE)
optimizer.apply_gradients(grad(linear_regression, train_X, train_Y)) # train_X and train_Y are your input data and label

Tags:

Tensorflow