What does the power operator (**) in python translate into?
While the second one is little bit faster for numbers, the advantage is very low compared to the first: readability. If you are going for time, and you are pressured to make such optimizations, then python probably is not the language you should use.
Note: for values other than numbers:
a ** b translates to
a.__pow__(b)
whereas a * a * a is a call to
a.__mul__(a.__mul__(a))
Test Code:
import time
s = time.time()
for x in xrange(1,1000000):
x**5
print "done in ", time.time() - s
s = time.time()
for x in xrange(1,1000000):
x*x*x*x*x
print "done in ", time.time() - s
For my machine it yields:
done in 0.975429058075
done in 0.260419845581
[Finished in 1.2s]
If you're interested in the internals, I'd disassemble the instruction to get the CPython bytecode it maps to. Using Python3:
»»» def test():
return 2**3
...:
»»» dis.dis(test)
2 0 LOAD_CONST 3 (8)
3 RETURN_VALUE
OK, so that seems to have done the calculation right on entry, and stored the result. You get exactly the same CPython bytecode for 2*2*2 (feel free to try it). So, for the expressions that evaluate to a constant, you get the same result and it doesn't matter.
What if you want the power of a variable?
Now you get two different bits of bytecode:
»»» def test(n):
return n ** 3
»»» dis.dis(test)
2 0 LOAD_FAST 0 (n)
3 LOAD_CONST 1 (3)
6 BINARY_POWER
7 RETURN_VALUE
vs.
»»» def test(n):
return n * 2 * 2
....:
»»» dis.dis(test)
2 0 LOAD_FAST 0 (n)
3 LOAD_CONST 1 (2)
6 BINARY_MULTIPLY
7 LOAD_CONST 1 (2)
10 BINARY_MULTIPLY
11 RETURN_VALUE
Now the question is of course, is the BINARY_MULTIPLY quicker than the BINARY_POWER operation?
The best way to try that is to use timeit. I'll use the IPython %timeit
magic. Here's the output for multiplication:
%timeit test(100)
The slowest run took 15.52 times longer than the fastest. This could mean that an intermediate result is being cached
10000000 loops, best of 3: 163 ns per loop
and for power
The slowest run took 5.44 times longer than the fastest. This could mean that an intermediate result is being cached
1000000 loops, best of 3: 473 ns per loop
You may wish to repeat this for representative inputs, but empirically it looks like the multiplication is quicker (but note the mentioned caveat about the variance in the output).
If you want further internals, I'd suggest digging into the CPython code.