What Hermitian operators can be observables?

I think the fundamental object is quantum mechanics is not the Hilbert space and operators on it but the C*-algebra of observables. In this picture the Hilbert space appears as a representation of the algebra. Different irreducible representations are different superselection sectors. The answer to "which operator is observable" is thus simple: the observable operators are those that come from the algebra. Indeed its better to think of observables as self-adjoint elements of the algebra rather than as operators

You might ask where do we get the algebra from. Well, this already should be supplied by the particular model. For a quantum mechanical particle moving on a manifold $M$, the C*-algebra consists of all bounded operators on $L^2(\hat{M})$ commuting with $\pi_1(M)$ where $\hat{M}$ is the universal cover of $M$. The superselection sectors correspond to irreducible representations of $\pi_1(M)$. For QFTs the problem of constructing the algebra of observables is in general open however certain cases (such as free QFT and I believe rational CFT as well) were solved. An approach emphasizing the algebra point of view is Haag-Kastler axiomatic QFT

From the point of view of deformation quantization the quantum observable algebra is a non-commutative deformation of the algebra of continuous (say) functions on the classical phase space. This point of view is not fundamental but it's useful. For example it allows to understand different values of spin and different quantum statistics as superselection sectors


Without superselection rules to restrict the observables, any Hermitian operator is an admissible observable. The case of multiple identical systems is very important. Indeed, if the systems are really identical, only observables that are symmetric under the exchange of the systems are admissible. In such a case, technically speaking you should only consider observables that commute with all possible permutation operators (i.e., with the elements of the representation of the permutation group on the Hilbert space of the systems).