What is copy-on-write?
I was going to write up my own explanation but this Wikipedia article pretty much sums it up.
Here is the basic concept:
Copy-on-write (sometimes referred to as "COW") is an optimization strategy used in computer programming. The fundamental idea is that if multiple callers ask for resources which are initially indistinguishable, you can give them pointers to the same resource. This function can be maintained until a caller tries to modify its "copy" of the resource, at which point a true private copy is created to prevent the changes becoming visible to everyone else. All of this happens transparently to the callers. The primary advantage is that if a caller never makes any modifications, no private copy need ever be created.
Also here is an application of a common use of COW:
The COW concept is also used in maintenance of instant snapshot on database servers like Microsoft SQL Server 2005. Instant snapshots preserve a static view of a database by storing a pre-modification copy of data when underlaying data are updated. Instant snapshots are used for testing uses or moment-dependent reports and should not be used to replace backups.
"Copy on write" means more or less what it sounds like: everyone has a single shared copy of the same data until it's written, and then a copy is made. Usually, copy-on-write is used to resolve concurrency sorts of problems. In ZFS, for example, data blocks on disk are allocated copy-on-write; as long as there are no changes, you keep the original blocks; a change changed only the affected blocks. This means the minimum number of new blocks are allocated.
These changes are also usually implemented to be transactional, ie, they have the ACID properties. This eliminates some concurrency issues, because then you're guaranteed that all updates are atomic.
I shall not repeat the same answer on Copy-on-Write. I think Andrew's answer and Charlie's answer have already made it very clear. I will give you an example from OS world, just to mention how widely this concept is used.
We can use fork()
or vfork()
to create a new process. vfork follows the concept of copy-on-write. For example, the child process created by vfork will share the data and code segment with the parent process. This speeds up the forking time. It is expected to use vfork if you are performing exec followed by vfork. So vfork will create the child process which will share data and code segment with its parent but when we call exec, it will load up the image of a new executable in the address space of the child process.