What is the difference between Early and Late Binding?

The short answer is that early (or static) binding refers to compile time binding and late (or dynamic) binding refers to runtime binding (for example when you use reflection).


Similar but more detailed answer from Herbert Schildt C++ book:-

Early binding refers to events that occur at compile time. In essence, early binding occurs when all information needed to call a function is known at compile time. (Put differently, early binding means that an object and a function call are bound during compilation.) Examples of early binding include normal function calls (including standard library functions), overloaded function calls, and overloaded operators. The main advantage to early binding is efficiency. Because all information necessary to call a function is determined at compile time, these types of function calls are very fast.

The opposite of early binding is late binding. Late binding refers to function calls that are not resolved until run time. Virtual functions are used to achieve late binding. As you know, when access is via a base pointer or reference, the virtual function actually called is determined by the type of object pointed to by the pointer. Because in most cases this cannot be determined at compile time, the object and the function are not linked until run time. The main advantage to late binding is flexibility. Unlike early binding, late binding allows you to create programs that can respond to events occurring while the program executes without having to create a large amount of "contingency code." Keep in mind that because a function call is not resolved until run time, late binding can make for somewhat slower execution times. However today, fast computers have significantly reduced the execution times related to late binding.


In compiled languages, the difference is stark.

Java:

//early binding:
public create_a_foo(*args) {
 return new Foo(args)
}
my_foo = create_a_foo();

//late binding:
public create_something(Class klass, *args) {
  klass.new_instance(args)
}
my_foo = create_something(Foo);

In the first example, the compiler can do all sorts of neat stuff at compile time. In the second, you just have to hope that whoever uses the method does so responsibly. (Of course, newer JVMs support the Class<? extends Foo> klass structure, which can greatly reduce this risk.)

Another benefit is that IDEs can hotlink to the class definition, since it's declared right there in the method. The call to create_something(Foo) might be very far from the method definition, and if you're looking at the method definition, it might be nice to see the implementation.

The major advantage of late binding is that it makes things like inversion-of-control easier, as well as certain other uses of polymorphism and duck-typing (if your language supports such things).