What is the difference between model.fit() an model.evaluate() in Keras?

fit() is for training the model with the given inputs (and corresponding training labels).

evaluate() is for evaluating the already trained model using the validation (or test) data and the corresponding labels. Returns the loss value and metrics values for the model.

predict() is for the actual prediction. It generates output predictions for the input samples.

Let us consider a simple regression example:

# input and output
x = np.random.uniform(0.0, 1.0, (200))
y = 0.3 + 0.6*x + np.random.normal(0.0, 0.05, len(y))

enter image description here

Now lets apply a regression model in keras:

# A simple regression model
model = Sequential()
model.add(Dense(1, input_shape=(1,)))
model.compile(loss='mse', optimizer='rmsprop')

# The fit() method - trains the model
model.fit(x, y, nb_epoch=1000, batch_size=100)

Epoch 1000/1000
200/200 [==============================] - 0s - loss: 0.0023

# The evaluate() method - gets the loss statistics
model.evaluate(x, y, batch_size=200)     
# returns: loss: 0.0022612824104726315

# The predict() method - predict the outputs for the given inputs
model.predict(np.expand_dims(x[:3],1)) 
# returns: [ 0.65680361],[ 0.70067143],[ 0.70482892]

In Deep learning you first want to train your model. You take your data and split it into two sets: the training set, and the test set. It seems pretty common that 80% of your data goes into your training set and 20% goes into your test set.

Your training set gets passed into your call to fit() and your test set gets passed into your call to evaluate(). During the fit operation a number of rows of your training data are fed into your neural net (based on your batch size). After every batch is sent the fit algorithm does back propagation to adjust the weights in your neural net.

After this is done your neural net is trained. The problem is sometimes your neural net gets overfit which is a condition where it performs well for the training set but poorly for other data. To guard against this situation you run the evaluate() function to send new data (your test set) through your neural net to see how it performs with data it has never seen. There is no training occurring, this is purely a test. If all goes well then the score from training is similar to the score from testing.