What is the difference between PyCUDA and NumbaPro CUDA Python?
let's talk about each one of these libraries:
PyCUDA:
PyCUDA is a Python programming environment for CUDA it give you access to Nvidia's CUDA parallel computation API from Python. PyCUDA is written in C++(the base layer) and Python,the C++ code will be executed on the NVIDIA chip, and Python code to compile, execute, and get the results of the C++ code and Automatically manages resources which make it one of powerful library CUDA.
PyCUDA is slightly different from to PyOpenCl can be used to run code on a variety of platforms, including Intel, AMD, NVIDIA, and ATI chips. unlike PyCUDA which can be run on NVIDIA chips only:
Python + CUDA = PyCUDA
Python + OpenCL = PyOpenCL
NUMBA/NumbaPro:
NUMBA : NumbaPro or recently Numba (NumbaPro has been deprecated, and its code generation features have been moved into open-source Numba.) is an Open Source NumPy-aware optimizing compiler for Python sponsored by Anaconda, Inc. It uses the remarkable LLVM compiler infrastructure to compile Python syntax to machine code. Numba supports compilation of Python to run on either CPU or GPU hardware and it's fundamentally written in Python. it's easy to install and implement.
As @Wang has mentioned, Pycuda is faster than Numba.
numbapro now is numba on BSD license which is free also.
according to this report pyOpenCL and pyCUDA is 5 times faster than numba