What is the formula for $\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+\frac{1}{3\cdot 4}+\cdots +\frac{1}{n(n+1)}$
Hint: Use the fact that $\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$ and find $S_n=\sum_1^n\left(\frac{1}{k}-\frac{1}{k+1}\right)$.
If you simplify your partial sums, you get $\frac12,\frac23,\frac34,\frac45,....$ Does this give you any ideas?
While exploitation of the resulting telescoping series after partial fraction expansion is a very simple way forward, I thought it might be instructive to present another way forward. Here, we write
$$\begin{align} \sum_{k=1}^N \frac{1}{k(k+1)}&=\sum_{k=1}^N \int_0^1y^{k-1}\,dy \int_0^1 x^k\,dx\\\\ &=\int_0^1\int_0^1x\sum_{k=1}^N (xy)^{k-1}\,dx\\\\ &=\int_0^1\int_0^1 x\frac{1-(xy)^N}{1-xy}\,dx\,dy\\\\ &=\int_0^1\int_0^x \frac{1-y^N}{1-y}\,dy\,dx\\\\ &=\int_0^1\int_y^1\frac{1-y^N}{1-y}\,dx\,dy\\\\ &=\int_0^1(1-y^N)\,dy\\\\ &=1-\frac1{N+1} \end{align}$$
as expected!