What is the problem with my implementation of the cross-entropy function?
def cross_entropy(x, y):
""" Computes cross entropy between two distributions.
Input: x: iterabale of N non-negative values
y: iterabale of N non-negative values
Returns: scalar
"""
if np.any(x < 0) or np.any(y < 0):
raise ValueError('Negative values exist.')
# Force to proper probability mass function.
x = np.array(x, dtype=np.float)
y = np.array(y, dtype=np.float)
x /= np.sum(x)
y /= np.sum(y)
# Ignore zero 'y' elements.
mask = y > 0
x = x[mask]
y = y[mask]
ce = -np.sum(x * np.log(y))
return ce
def cross_entropy_via_scipy(x, y):
''' SEE: https://en.wikipedia.org/wiki/Cross_entropy'''
return entropy(x) + entropy(x, y)
from scipy.stats import entropy, truncnorm
x = truncnorm.rvs(0.1, 2, size=100)
y = truncnorm.rvs(0.1, 2, size=100)
print np.isclose(cross_entropy(x, y), cross_entropy_via_scipy(x, y))
You're not that far off at all, but remember you are taking the average value of N sums, where N = 2 (in this case). So your code could read:
def cross_entropy(predictions, targets, epsilon=1e-12):
"""
Computes cross entropy between targets (encoded as one-hot vectors)
and predictions.
Input: predictions (N, k) ndarray
targets (N, k) ndarray
Returns: scalar
"""
predictions = np.clip(predictions, epsilon, 1. - epsilon)
N = predictions.shape[0]
ce = -np.sum(targets*np.log(predictions+1e-9))/N
return ce
predictions = np.array([[0.25,0.25,0.25,0.25],
[0.01,0.01,0.01,0.96]])
targets = np.array([[0,0,0,1],
[0,0,0,1]])
ans = 0.71355817782 #Correct answer
x = cross_entropy(predictions, targets)
print(np.isclose(x,ans))
Here, I think it's a little clearer if you stick with np.sum()
. Also, I added 1e-9 into the np.log()
to avoid the possibility of having a log(0) in your computation. Hope this helps!
NOTE: As per @Peter's comment, the offset of 1e-9
is indeed redundant if your epsilon value is greater than 0
.