what's the inverse of the quantile function on a pandas Series?
I had the same question as you did! I found an easy way of getting the inverse of quantile using scipy.
#libs required
from scipy import stats
import pandas as pd
import numpy as np
#generate ramdom data with same seed (to be reproducible)
np.random.seed(seed=1)
df = pd.DataFrame(np.random.uniform(0,1,(10)), columns=['a'])
#quantile function
x = df.quantile(0.5)[0]
#inverse of quantile
stats.percentileofscore(df['a'],x)
Sorting can be expensive, if you look for a single value I'd guess you'd be better of computing it with:
s = pd.Series(np.random.uniform(size=1000))
( s < 0.7 ).astype(int).mean() # =0.7ish
There's probably a way to avoid the int(bool) shenanigan.
There's no 1-liner that I know of, but you can achieve this with scipy:
import pandas as pd
import numpy as np
from scipy.interpolate import interp1d
# set up a sample dataframe
df = pd.DataFrame(np.random.uniform(0,1,(11)), columns=['a'])
# sort it by the desired series and caculate the percentile
sdf = df.sort('a').reset_index()
sdf['b'] = sdf.index / float(len(sdf) - 1)
# setup the interpolator using the value as the index
interp = interp1d(sdf['a'], sdf['b'])
# a is the value, b is the percentile
>>> sdf
index a b
0 10 0.030469 0.0
1 3 0.144445 0.1
2 4 0.304763 0.2
3 1 0.359589 0.3
4 7 0.385524 0.4
5 5 0.538959 0.5
6 8 0.642845 0.6
7 6 0.667710 0.7
8 9 0.733504 0.8
9 2 0.905646 0.9
10 0 0.961936 1.0
Now we can see that the two functions are inverses of each other.
>>> df['a'].quantile(0.57)
0.61167933268395969
>>> interp(0.61167933268395969)
array(0.57)
>>> interp(df['a'].quantile(0.43))
array(0.43)
interp can also take in list, a numpy array, or a pandas data series, any iterator really!