What would be the "distinct method" that Traversable has in addition to Foldable?
Foldable
is to Functor
as Traversable
is to Monad
, i.e. Foldable
and Functor
are superclasses of Monad
and Traversable
(modulo all the applicative/monad proposal noise).
Indeed, that's already in the code
instance Foldable f => Traversable f where
...
So, it's not clear what more there is to want. Foldable
is characterized by toList :: Foldable f => f a -> [a]
while Traversable
depends ultimately on not only being able to abstract the content as a list like toList
does, but also to be able to extract the shape
shape :: Functor f => f a -> f ()
shape = fmap (const ())
and then recombine them
combine :: Traversable f => f () -> [a] -> Maybe (f a)
combine f_ = evalStateT (traverse pop f_) where
pop :: StateT [a] Maybe a
pop = do x <- get
case x of
[] = empty
(a:as) = set as >> return a
which depends on traverse
.
For more information on this property see this blog post by Russell O'Connor.
Super hand-wavy because it's late, but the extra power that Traversable
has over Foldable
is a way to reconstruct the original structure. For example, with lists:
module MyTraverse where
import Data.Foldable
import Data.Traversable
import Control.Applicative
import Data.Monoid
data ListRec f x = ListRec
{ el :: f (Endo [x])
}
instance Applicative f => Monoid (ListRec f x) where
mempty = ListRec (pure mempty)
mappend (ListRec l) (ListRec r) =
ListRec (mappend <$> l <*> r)
toM :: Functor f => f b -> ListRec f b
toM this = ListRec $ (Endo . (:)) <$> this
fromM :: Functor f => ListRec f b -> f [b]
fromM (ListRec l) = flip appEndo [] <$> l
myTraverse :: Applicative f => (a-> f b) -> [a] -> f [b]
myTraverse f xs = fromM $ foldMap (toM . f) xs
I think this myTraverse
behaves the same as traverse
, using only the classes Applicative
, Foldable
, and Monoid
. You could re-write it to use foldr
instead of foldMap
if you wanted to get rid of Monoid
.
lists are easy because they're a flat structure. However, I strongly suspect that you could use a Zipper to get the proper reconstruction function for any structure (since zippers are generically derivable, they should always exists).
But even with a zipper, you don't have any way of indicating that structure to the monoid/function. Notionally, it seems Traversable
adds something like
class Traversed t where
type Path t :: *
annotate :: t a -> [(Path t, a)]
fromKeyed :: [(Path t, a)] -> t a
this seems to overlap heavily with Foldable
, but I think that's inevitable when trying to associate the paths with their constituent values.