When does a finite ring become a finite field?
HINT 1) If $\;\rm R\;$ is finite then $\;\rm x\to r\:x\;$ is onto iff 1-1, so $\;\rm R\;$ is a field iff $\;\rm R\;$ is a domain.
2) is Wedderburn's little theorem.
HINT 1) If $\;\rm R\;$ is finite then $\;\rm x\to r\:x\;$ is onto iff 1-1, so $\;\rm R\;$ is a field iff $\;\rm R\;$ is a domain.
2) is Wedderburn's little theorem.