When should I define a (explicit or implicit) conversion operator in C#?

As mentioned in the comments, degrees and rotations are a good example to avoid mixing up double values, especially between APIs.

I pulled out the Radians and Degrees classes we're currently using and here they are. Taking a look at them now (after so long) I want to clean them up (especially the comments/documentation) and make sure they're properly tested. Thankfully, I've managed to get time in the scheduling to do so. At any rate, use these at your own risk, I can't guarantee if all the math here is correct as I'm pretty sure we haven't actually used/tested all the functionality we wrote in.

Radians

/// <summary>
/// Defines an angle in Radians
/// </summary>
public struct Radians
{
    public static readonly Radians ZERO_PI = 0;
    public static readonly Radians ONE_PI = System.Math.PI;
    public static readonly Radians TWO_PI = ONE_PI * 2;
    public static readonly Radians HALF_PI = ONE_PI * 0.5;
    public static readonly Radians QUARTER_PI = ONE_PI * 0.25;
    
    #region Public Members

    /// <summary>
    /// Angle value
    /// </summary>
    public double Value;
    /// <summary>
    /// Finds the Cosine of the angle
    /// </summary>
    public double Cos
    {
        get
        {
            return System.Math.Cos(this);
        }
    }
    /// <summary>
    /// Finds the Sine of the angle
    /// </summary>
    public double Sin
    {
        get
        {
            return System.Math.Sin(this);
        }
    }

    #endregion

    /// <summary>
    /// Constructor
    /// </summary>
    /// <param name="value">angle value in radians</param>
    public Radians(double value)
    {
        this.Value = value;
    }
    /// <summary>
    /// Gets the angle in degrees
    /// </summary>
    /// <returns>Returns the angle in degrees</returns>
    public Degrees GetDegrees()
    {
        return this;
    }

    public Radians Reduce()
    {
        double radian = this.Value;
        bool IsNegative = radian < 0;
        radian = System.Math.Abs(radian);
        while (radian >= System.Math.PI * 2)
        {
            radian -= System.Math.PI * 2;
        }
        if (IsNegative && radian != 0)
        {
            radian = System.Math.PI * 2 - radian;
        }
        return radian;
    }

    #region operator overloading

    /// <summary>
    /// Conversion of Degrees to Radians
    /// </summary>
    /// <param name="deg"></param>
    /// <returns></returns>
    public static implicit operator Radians(Degrees deg)
    {
        return new Radians(deg.Value * System.Math.PI / 180);
    }
    /// <summary>
    /// Conversion of integer to Radians
    /// </summary>
    /// <param name="i"></param>
    /// <returns></returns>
    public static implicit operator Radians(int i)
    {
        return new Radians((double)i);
    }
    /// <summary>
    /// Conversion of float to Radians
    /// </summary>
    /// <param name="f"></param>
    /// <returns></returns>
    public static implicit operator Radians(float f)
    {
        return new Radians((double)f);
    }
    /// <summary>
    /// Conversion of double to Radians
    /// </summary>
    /// <param name="dbl"></param>
    /// <returns></returns>
    public static implicit operator Radians(double dbl)
    {
        return new Radians(dbl);
    }
    /// <summary>
    /// Conversion of Radians to double
    /// </summary>
    /// <param name="rad"></param>
    /// <returns></returns>
    public static implicit operator double(Radians rad)
    {
        return rad.Value;
    }
    /// <summary>
    /// Add Radians and a double
    /// </summary>
    /// <param name="rad"></param>
    /// <param name="dbl"></param>
    /// <returns></returns>
    public static Radians operator +(Radians rad, double dbl)
    {
        return new Radians(rad.Value + dbl);
    }
    /// <summary>
    /// Add Radians to Radians
    /// </summary>
    /// <param name="rad1"></param>
    /// <param name="rad2"></param>
    /// <returns></returns>
    public static Radians operator +(Radians rad1, Radians rad2)
    {
        return new Radians(rad1.Value + rad2.Value);
    }
    /// <summary>
    /// Add Radians and Degrees
    /// </summary>
    /// <param name="rad"></param>
    /// <param name="deg"></param>
    /// <returns></returns>
    public static Radians operator +(Radians rad, Degrees deg)
    {
        return new Radians(rad.Value + deg.GetRadians().Value);
    }
    /// <summary>
    /// Sets Radians value negative
    /// </summary>
    /// <param name="rad"></param>
    /// <returns></returns>
    public static Radians operator -(Radians rad)
    {
        return new Radians(-rad.Value);
    }
    /// <summary>
    /// Subtracts a double from Radians
    /// </summary>
    /// <param name="rad"></param>
    /// <param name="dbl"></param>
    /// <returns></returns>
    public static Radians operator -(Radians rad, double dbl)
    {
        return new Radians(rad.Value - dbl);
    }
    /// <summary>
    /// Subtracts Radians from Radians
    /// </summary>
    /// <param name="rad1"></param>
    /// <param name="rad2"></param>
    /// <returns></returns>
    public static Radians operator -(Radians rad1, Radians rad2)
    {
        return new Radians(rad1.Value - rad2.Value);
    }
    /// <summary>
    /// Subtracts Degrees from Radians
    /// </summary>
    /// <param name="rad"></param>
    /// <param name="deg"></param>
    /// <returns></returns>
    public static Radians operator -(Radians rad, Degrees deg)
    {
        return new Radians(rad.Value - deg.GetRadians().Value);
    }


    #endregion

    public override string ToString()
    {
        return String.Format("{0}", this.Value);
    }

    public static Radians Convert(object value)
    {
        if (value is Radians)
            return (Radians)value;
        if (value is Degrees)
            return (Degrees)value;

        return System.Convert.ToDouble(value);
    }
}

Degrees

public struct Degrees
{
    public double Value;       

    public Degrees(double value) { this.Value = value; }

    public Radians GetRadians()
    {
        return this;
    }

    public Degrees Reduce()
    {
        return this.GetRadians().Reduce();
    }

    public double Cos
    {
        get
        {
            return System.Math.Cos(this.GetRadians());
        }
    }

    public double Sin
    {
        get
        {
            return System.Math.Sin(this.GetRadians());
        }
    }

    #region operator overloading

    public static implicit operator Degrees(Radians rad)
    {
        return new Degrees(rad.Value * 180 / System.Math.PI);
    }

    public static implicit operator Degrees(int i)
    {
        return new Degrees((double)i);
    }

    public static implicit operator Degrees(float f)
    {
        return new Degrees((double)f);
    }

    public static implicit operator Degrees(double d)
    {
        return new Degrees(d);
    }

    public static implicit operator double(Degrees deg)
    {
        return deg.Value;
    }

    public static Degrees operator +(Degrees deg, int i)
    {
        return new Degrees(deg.Value + i);
    }

    public static Degrees operator +(Degrees deg, double dbl)
    {
        return new Degrees(deg.Value + dbl);
    }

    public static Degrees operator +(Degrees deg1, Degrees deg2)
    {
        return new Degrees(deg1.Value + deg2.Value);
    }

    public static Degrees operator +(Degrees deg, Radians rad)
    {
        return new Degrees(deg.Value + rad.GetDegrees().Value);
    }

    public static Degrees operator -(Degrees deg)
    {
        return new Degrees(-deg.Value);
    }

    public static Degrees operator -(Degrees deg, int i)
    {
        return new Degrees(deg.Value - i);
    }

    public static Degrees operator -(Degrees deg, double dbl)
    {
        return new Degrees(deg.Value - dbl);
    }

    public static Degrees operator -(Degrees deg1, Degrees deg2)
    {
        return new Degrees(deg1.Value - deg2.Value);
    }

    public static Degrees operator -(Degrees deg, Radians rad)
    {
        return new Degrees(deg.Value - rad.GetDegrees().Value);
    }

    #endregion

    public override string ToString()
    {
        return String.Format("{0}", this.Value);
    }

    public static Degrees Convert(object value)
    {
        if (value is Degrees)
            return (Degrees)value;
        if (value is Radians)
            return (Radians)value;

        return System.Convert.ToDouble(value);
    }
}

Some sample usage

These really benefit when being used an an API. While, internally, your organization might decide to strictly stick with degrees or radians to avoid mixups, at least with these classes you can use the type that makes the most sense. For example, publicly consumed APIs or GUI APIs can use Degrees whereas your heavy math/trig or internal usage might use Radians. Considering the following classes/print function:

public class MyRadiansShape
{
    public Radians Rotation { get; set; }
}

public class MyDegreesShape
{
    public Degrees Rotation { get; set; }
}

public static void PrintRotation(Degrees degrees, Radians radians)
{
    Console.WriteLine(String.Format("Degrees: {0}, Radians: {1}", degrees.Value, radians.Value));
}

Yeah, the code is pretty contrived (and terribly ambiguous) but that's OK! Just goes to show how it can help reduce accidental mixups.

var radiansShape = new MyRadiansShape() { Rotation = Math.PI / 2}; //prefer "Radians.HALF_PI" instead, but just as an example
var degreesShape = new MyDegreesShape() { Rotation = 90 };

PrintRotation(radiansShape.Rotation, radiansShape.Rotation);
PrintRotation(degreesShape.Rotation, degreesShape.Rotation);
PrintRotation(radiansShape.Rotation + degreesShape.Rotation, radiansShape.Rotation + degreesShape.Rotation);

//Degrees: 90, Radians: 1.5707963267949
//Degrees: 90, Radians: 1.5707963267949
//Degrees: 180, Radians: 3.14159265358979

Then they can be really useful for implementing other mathematical concepts based on angles, such as polar coordinates:

double distance = 5;
Polar polarCoordinate = new Polar(distance, (degreesShape.Rotation - radiansShape.Rotation) + Radians.QUARTER_PI);
Console.WriteLine("Polar Coordinate Angle: " + (Degrees)polarCoordinate.Angle); //because it's easier to read degrees!
//Polar Coordinate Angle: 45

Then finally, you could implement a Point2D class (or use the System.Windows.Point) with implicit conversions to/from Polar:

Point2D cartesianCoordinate = polarCoordinate;
Console.WriteLine(cartesianCoordinate.X + ", " + cartesianCoordinate.Y);
//3.53553390593274, 3.53553390593274

As I said, I want to take another pass at these classes, and probably eliminate the double implicit conversions to Radians to avoid a couple corner case mixups and compiler ambiguities that are possible. Those were actually there before we created the static ONE_PI, HALF_PI (and so on) fields and we were converting from some multiple of the Math.PI double.

EDIT: Here's the Polar class as a demonstration of additional implicit conversions. It takes advantage of the Radians class (and thus its implicit conversions) and the helper methods on it and the Point2D class. I haven't included it here, but the Polar class can easily implement operators interacting with the Point2D class but those aren't relevant for this discussion.

public struct Polar
{
    public double Radius;
    public Radians Angle;

    public double X { get { return Radius * Angle.Cos; } }
    public double Y { get { return Radius * Angle.Sin; } }

    public Polar(double radius, Radians angle)
    {
        this.Radius = radius;
        this.Angle = angle;
    }

    public Polar(Point2D point)
        : this(point.Magnitude(), point.GetAngleFromOrigin())
    {
    }

    public Polar(Point2D point, double radius)
        : this(radius, point.GetAngleFromOrigin())
    {
    }

    public Polar(Point2D point, Point2D origin)
        : this(point - origin)
    {
    }

    public Point2D ToCartesian()
    {
        return new Point2D(X, Y);
    }
    
    public static implicit operator Point2D(Polar polar)
    {
        return polar.ToCartesian();
    }

    public static implicit operator Polar(Point2D vector)
    {
        return new Polar(vector);
    }
}

I use it to have seamless conversion from DateTime to "yyyyMMdd" or to its corresponding int (yyyyMMdd) value.

For example:

void f1(int yyyyMMdd);
void f2(string yyyyMMdd);

...
f1(30.YearsFrom(DateTime.Today));
f2(30.YearsFrom(DateTime.Today));

...
public static DateAsYyyyMmDd YearsFrom(this int y, DateTime d) 
{
    return new DateAsYyyyMmDd(d.AddYears(y));
}

...
public class DateAsYyyyMmDd
{
    private readonly DateTime date;

    public DateAsYyyyMmDd(DateTime date)
    {
        this.date = date;
    }

    public static implicit operator int(DateOrYyyyMmDd d)
    {
        return Convert.ToInt32(d.date.ToString("yyyyMMdd"));
    }

    public static implicit operator string(DateOrYyyyMmDd d)
    {
        return d.date.ToString("yyyyMMdd");
    }
}

You can use a conversion operator when there is a natural and clear conversion to or from a different type.

Say for example that you have a data type for representing temperatures:

public enum TemperatureScale { Kelvin, Farenheit, Celsius }

public struct Temperature {

  private TemperatureScale _scale;
  private double _temp;

  public Temperature(double temp, TemperatureScale scale) {
    _scale = scale;
    _temp = temp;
  }

  public static implicit operator Temperature(double temp) {
    return new Temperature(temp, TemperatureScale.Kelvin);
  }

}

Using the implicit operator you can assign a double to a temperature variable, and it will automatically be used as Kelvin:

Temperature a = new Temperature(100, TemperatureScale.Celcius);
Temperature b = 373.15; // Kelvin is default