Where can I find the world's fastest atof implementation?
What is your accuracy requirement? If you truly need it "correct" (always gets the nearest floating-point value to the decimal specified), it will probably be hard to beat the standard library versions (other than removing locale support, which you've already done), since this requires doing arbitrary precision arithmetic. If you're willing to tolerate an ulp or two of error (and more than that for subnormals), the sort of approach proposed by cruzer's can work and may be faster, but it definitely will not produce <0.5ulp output. You will do better accuracy-wise to compute the integer and fractional parts separately, and compute the fraction at the end (e.g. for 12345.6789, compute it as 12345 + 6789 / 10000.0, rather than 6*.1 + 7*.01 + 8*.001 + 9*0.0001) since 0.1 is an irrational binary fraction and error will accumulate rapidly as you compute 0.1^n. This also lets you do most of the math with integers instead of floats.
The BCD instructions haven't been implemented in hardware since (IIRC) the 286, and are simply microcoded nowadays. They are unlikely to be particularly high-performance.
This implementation I just finished coding runs twice as fast as the built in 'atof' on my desktop. It converts 1024*1024*39 number inputs in 2 seconds, compared 4 seconds with my system's standard gnu 'atof'. (Including the setup time and getting memory and all that).
UPDATE: Sorry I have to revoke my twice as fast claim. It's faster if the thing you're converting is already in a string, but if you're passing it hard coded string literals, it's about the same as atof. However I'm going to leave it here, as possibly with some tweaking of the ragel file and state machine, you may be able to generate faster code for specific purposes.
https://github.com/matiu2/yajp
The interesting files for you are:
https://github.com/matiu2/yajp/blob/master/tests/test_number.cpp
https://github.com/matiu2/yajp/blob/master/number.hpp
Also you may be interested in the state machine that does the conversion:
It seems to me you want to build (by hand) what amounts to a state machine where each state handles the Nth input digit or exponent digits; this state machine would be shaped like a tree (no loops!). The goal is to do integer arithmetic wherever possible, and (obviously) to remember state variables ("leading minus", "decimal point at position 3") in the states implicitly, to avoid assignments, stores and later fetch/tests of such values. Implement the state machine with plain old "if" statements on the input characters only (so your tree gets to be a set of nested ifs). Inline accesses to buffer characters; you don't want a function call to getchar
to slow you down.
Leading zeros can simply be suppressed; you might need a loop here to handle ridiculously long leading zero sequences. The first nonzero digit can be collected without zeroing an accumulator or multiplying by ten. The first 4-9 nonzero digits (for 16 bit or 32 bits integers) can be collected with integer multiplies by constant value ten (turned by most compilers into a few shifts and adds). [Over the top: zero digits don't require any work until a nonzero digit is found and then a multiply 10^N for N sequential zeros is required; you can wire all this in into the state machine]. Digits following the first 4-9 may be collected using 32 or 64 bit multiplies depending on the word size of your machine. Since you don't care about accuracy, you can simply ignore digits after you've collected 32 or 64 bits worth; I'd guess that you can actually stop when you have some fixed number of nonzero digits based on what your application actually does with these numbers. A decimal point found in the digit string simply causes a branch in the state machine tree. That branch knows the implicit location of the point and therefore later how to scale by a power of ten appropriately. With effort, you may be able to combine some state machine sub-trees if you don't like the size of this code.
[Over the top: keep the integer and fractional parts as separate (small) integers. This will require an additional floating point operation at the end to combine the integer and fraction parts, probably not worth it].
[Over the top: collect 2 characters for digit pairs into a 16 bit value, lookup the 16 bit value. This avoids a multiply in the registers in trade for a memory access, probably not a win on modern machines].
On encountering "E", collect the exponent as an integer as above; look up accurately precomputed/scaled powers of ten up in a table of precomputed multiplier (reciprocals if "-" sign present in exponent) and multiply the collected mantissa. (don't ever do a float divide). Since each exponent collection routine is in a different branch (leaf) of the tree, it has to adjust for the apparent or actual location of the decimal point by offsetting the power of ten index.
[Over the top: you can avoid the cost of ptr++
if you know the characters for the number are stored linearly in a buffer and do not cross the buffer boundary. In the kth state along a tree branch, you can access the the kth character as *(start+k)
. A good compiler can usually hide the "...+k" in an indexed offset in the addressing mode.]
Done right, this scheme does roughly one cheap multiply-add per nonzero digit, one cast-to-float of the mantissa, and one floating multiply to scale the result by exponent and location of decimal point.
I have not implemented the above. I have implemented versions of it with loops, they're pretty fast.