Which is better: returning tuple or passing arguments to function as references?
Look at disassemble (compiled with GCC -O3):
It takes more instruction to implement tuple call.
0000000000000000 <returnValues(int, int)>:
0: 83 c2 64 add $0x64,%edx
3: 83 c6 64 add $0x64,%esi
6: 48 89 f8 mov %rdi,%rax
9: 89 17 mov %edx,(%rdi)
b: 89 77 04 mov %esi,0x4(%rdi)
e: c3 retq
f: 90 nop
0000000000000010 <returnValuesVoid(int&, int&)>:
10: 83 07 64 addl $0x64,(%rdi)
13: 83 06 64 addl $0x64,(%rsi)
16: c3 retq
But less instructions for the tuple caller:
0000000000000000 <callTuple()>:
0: 48 83 ec 18 sub $0x18,%rsp
4: ba 14 00 00 00 mov $0x14,%edx
9: be 0a 00 00 00 mov $0xa,%esi
e: 48 8d 7c 24 08 lea 0x8(%rsp),%rdi
13: e8 00 00 00 00 callq 18 <callTuple()+0x18> // call returnValues
18: 8b 74 24 0c mov 0xc(%rsp),%esi
1c: 48 8d 3d 00 00 00 00 lea 0x0(%rip),%rdi
23: e8 00 00 00 00 callq 28 <callTuple()+0x28> // std::cout::operator<<
28: 8b 74 24 08 mov 0x8(%rsp),%esi
2c: 48 8d 3d 00 00 00 00 lea 0x0(%rip),%rdi
33: e8 00 00 00 00 callq 38 <callTuple()+0x38> // std::cout::operator<<
38: 48 83 c4 18 add $0x18,%rsp
3c: c3 retq
3d: 0f 1f 00 nopl (%rax)
0000000000000040 <callRef()>:
40: 48 83 ec 18 sub $0x18,%rsp
44: 48 8d 74 24 0c lea 0xc(%rsp),%rsi
49: 48 8d 7c 24 08 lea 0x8(%rsp),%rdi
4e: c7 44 24 08 0a 00 00 movl $0xa,0x8(%rsp)
55: 00
56: c7 44 24 0c 14 00 00 movl $0x14,0xc(%rsp)
5d: 00
5e: e8 00 00 00 00 callq 63 <callRef()+0x23> // call returnValuesVoid
63: 8b 74 24 08 mov 0x8(%rsp),%esi
67: 48 8d 3d 00 00 00 00 lea 0x0(%rip),%rdi
6e: e8 00 00 00 00 callq 73 <callRef()+0x33> // std::cout::operator<<
73: 8b 74 24 0c mov 0xc(%rsp),%esi
77: 48 8d 3d 00 00 00 00 lea 0x0(%rip),%rdi
7e: e8 00 00 00 00 callq 83 <callRef()+0x43> // std::cout::operator<<
83: 48 83 c4 18 add $0x18,%rsp
87: c3 retq
I don't think there is any considerable performance different, but the tuple one is more clear, more readable.
Also tried inlined call, there is absolutely no different at all. Both of them generate exactly the same assemble code.
0000000000000000 <callTuple()>:
0: 48 8d 3d 00 00 00 00 lea 0x0(%rip),%rdi
7: 48 83 ec 08 sub $0x8,%rsp
b: be 6e 00 00 00 mov $0x6e,%esi
10: e8 00 00 00 00 callq 15 <callTuple()+0x15>
15: 48 8d 3d 00 00 00 00 lea 0x0(%rip),%rdi
1c: be 78 00 00 00 mov $0x78,%esi
21: 48 83 c4 08 add $0x8,%rsp
25: e9 00 00 00 00 jmpq 2a <callTuple()+0x2a> // TCO, optimized way to call a function and also return
2a: 66 0f 1f 44 00 00 nopw 0x0(%rax,%rax,1)
0000000000000030 <callRef()>:
30: 48 8d 3d 00 00 00 00 lea 0x0(%rip),%rdi
37: 48 83 ec 08 sub $0x8,%rsp
3b: be 6e 00 00 00 mov $0x6e,%esi
40: e8 00 00 00 00 callq 45 <callRef()+0x15>
45: 48 8d 3d 00 00 00 00 lea 0x0(%rip),%rdi
4c: be 78 00 00 00 mov $0x78,%esi
51: 48 83 c4 08 add $0x8,%rsp
55: e9 00 00 00 00 jmpq 5a <callRef()+0x2a> // TCO, optimized way to call a function and also return
Focus on what's more readable and which approach provides a better intuition to the reader, and please keep the performance issues you might think that arise in the background.
A function that returns a tuple (or a pair, a struct, etc.) is yelling to the author that the function returns something, that almost always has some meaning that the user can take into account.
A function that gives back the results in variables passed by reference, may slip the eye's attention of a tired reader.
So, in general, prefer to return the results by a tuple.
Mike van Dyke pointed to this link:
F.21: To return multiple "out" values, prefer returning a tuple or struct
Reason
A return value is self-documenting as an "output-only" value. Note that C++ does have multiple return values, by convention of using a tuple (including pair), possibly with the extra convenience of tie at the call site.
[...]
Exception
Sometimes, we need to pass an object to a function to manipulate its state. In such cases, passing the object by reference
T&
is usually the right technique.