Which is the easiest functional programming language for someone who has background in imperative languages?
I recommend pure-lang for these pedagogical ends. It's also plenty powerful. If you want something more popular / with more community support, then I'd recommend Scheme or OCaml, depending on whether you'd rather deal with unfamiliar syntax (go with Scheme) or deal with unfamiliar typing (go with OCaml) first. SML and F# are only slightly different from OCaml. Others have or will mention Clojure, Scala, and Haskell.
Clojure is a variant of Scheme, with its own idiosyncracies (e.g. no tail-call optimization), so using it would be a way of starting with Scheme. I'd expect you'd have an easier time with a less idiosyncratic Scheme implementation though. Racket is what's often used for teaching. Scala looks to be fundamentally similar to OCaml, but this is based on only casual familiarity.
Unlike Haskell, the other languages mentioned all have two advantages: (1) evaluation-order is eager by default, though you can get lazy evaluation by specifically requesting it. In Haskell's the reverse. (2) Mutation is available, though much of the libraries and code you'll see doesn't use it. I actually think it's pedagogically better to learn functional programming while at the same time having an eye on how it interacts with side-effects, and working your way to monadic-style composition somewhat down the road. So I think this is an advantage. Some will tell you that it's better to be thrown into Haskell's more-quarantined handling of mutaton first, though.
Robert Harper at CMU has some nice blog posts on teaching functional programming. As I understand, he also prefers languages like OCaml for teaching.
Among the three classes of languages I recommended (Pure, Scheme and friends, OCaml and friends), the first two have dynamic typing. The first and third have explicit reference cells (as though in Python, you restricted yourself to never reassiging a variable but you could still change what's stored at a list index). Scheme has implicit reference cells: variables themselves look mutable, as in C and Python, and the reference cell handling is done under the covers. In languages like that, you often have some form of explicit reference cell available too (as in the example I just gave in Python, or using mutable pairs/lists in Racket...in other Schemes, including the Scheme standard, those are the default pairs/lists).
One virtue Haskell does have is some textbooks are appearing for it. (I mean this sincerely, not snarkily.) What books/resources to use is another controversial issue with many wars/closed questions. SICP as others have recommended has many fans and also some critics. There seem to me to be many good choices. I won't venture further into those debates.
At first, read Structure and Implementation of Computer Programs. I recommend Lisp (for, example, it's dialect Scheme) as first functional programming language.
Another option is Clojure, which I'm given to understand is more "purely" functional than Scheme/Racket (don't ask me about the details here) and possibly similar enough to let you use it in conjunction with SICP (Structure and Interpretation of Computer Programs, a highly recommended book also suggested by another answer).