Which quaternary quadratic form represents $n$ the greatest number of times?
Theorem. Let $Q(x_1,\dots,x_k)$ be a positive definite integral quadratic form in $k\geq 2$ variables. Then the number of integral representations $Q(x_1,\dots,x_k)=n$ satisfies $$r_Q(n)\ll_{k,\epsilon}n^{k/2-1+\epsilon}.$$ The implied constant depends only on $k$ and $\epsilon$, so it is independent of the actual coefficients of $Q$.
Remark. The "Added 1" section, posted with the permission of Valentin Blomer, contains a more precise result for $k=4$.
Proof. We induct on $k$, and for simplicity we do not indicate the dependence of implied constants on $k$. The case $k=2$ is classical and goes back to Gauss (see the "Added 2" section for more details). So let $k\geq 3$, and assume that the statement holds with $k-1$ in place of $k$. We can assume that $$ Q(x_1,\dots,x_k)=\sum_{1\leq i,j\leq k} a_{ij}x_ix_j$$ is Minkowski reduced. In particular, $a_{ij}=a_{ji}$ and $$ 0<a_{11}\leq a_{22}\leq\dots\leq a_{kk}. $$ Then we have a decomposition $$ Q(x_1,\dots,x_k)=\sum_{i=1}^k h_i\left(\sum_{i\leq j\leq k}c_{ij}x_j\right)^2,$$ where $h_i\asymp a_{ii}$, $c_{ii}=1$ and $c_{ij}\ll 1$ (see Theorem 3.1 and Lemma 1.3 in Chapter 12 of Cassels: Rational quadratic forms). In particular, the coefficients of $Q$ satisfy $$ a_{11}\dots a_{kk}\asymp h_1\dots h_k=\det(Q),$$ hence also $a_{ij}\ll a_{kk}\ll\det(Q)$ and $h_k\asymp a_{kk}\gg\det(Q)^{1/k}$.
We fix the positive integer $n$, and we consider the integral representations $Q(x_1,\dots,x_k)=n$. The number of representations with $x_k=0$ is $\ll_{\epsilon}n^{k/2-3/2+\epsilon}$ by the induction hypothesis, so we can focus on the representations with $x_k\neq 0$. From the above, we see immediately that $x_k\ll\sqrt{n}\det(Q)^{-1/(2k)}$, and then also that $x_{k-1}\ll\sqrt{n}$, then $x_{k-2}\ll\sqrt{n}$, and so on, finally $x_3\ll\sqrt{n}$. It follows that there are $\ll n^{(k-2)/2}\det(Q)^{-1/(2k)}$ choices for the $(k-2)$-tuple $(x_3,\dots,x_k)$ such that $x_k\neq 0$. Fixing such a tuple, we are left with an inhomogeneous binary representation problem $$ a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2 + d_1 x_1 + d_2 x_2 + e = 0 $$ with fixed integral coefficients $d_1,d_2\ll\sqrt{n}\det(Q)$ and $e\ll n\det(Q)$. Using Lemma 8 in this paper of Blomer and Pohl, it follows that the number of choices for $(x_1,x_2)$ is $\ll_\epsilon n^\epsilon\det(Q)^\epsilon$. Summing up, we get $$ r_Q(n)\ll_{\epsilon} n^{k/2-3/2+\epsilon} + n^{(k-2)/2+\epsilon}\det(Q)^{-1/(2k)+\epsilon} \ll n^{k/2-1+\epsilon},$$ and we are done.
Added 1. I have been in touch with Valentin Blomer about the original question, and my answer above incorporated a key input from him. More importantly, he realized that the above argument together with some automorphic input allows one to prove, for the case of $k=4$ variables, the striking uniform upper bound (with an absolute implied constant) $$r_Q(n) \ll \sigma(n).$$ Here is the argument of Valentin Blomer, posted with his permission. For $n\leq\det(Q)^{10}$, the last line of the inductive proof above gives $$ r_Q(n)\ll_{\epsilon} n^{1/2+\epsilon} + n^{1+\epsilon}\det(Q)^{-1/8+\epsilon} \ll n^{79/80+2\epsilon},$$ so we can (and we shall) assume that $n>\det(Q)^{10}$. We decompose the $\theta$-series of $Q$ uniquely as $$\theta_Q(z) = E(z) +S(z) = \sum_{n=1}^\infty a(n) e(nz) + \sum_{n=1}^\infty b(n) e(nz)$$ into an Eisenstein series and a cusp form of weight $2$ and level $N$, which is the level of $Q$. Accordingly, $r_Q(n)=a(n)+b(n)$, so it suffices to show that $a(n)\ll\sigma(n)$ and $b(n)\ll\sigma(n)$. The first bound was proved by Gogishvili (Georgian Math. J. 13 (2006), 687-691.), as follows from (2) and (13)-(14) in his paper. Therefore, it suffices to prove the second bound. We write $$S = \sum_{f \in B} c(f) f$$ in terms of an orthonormal Hecke eigenbasis $B$ for $S_2(N, \chi)$, where $\chi$ is a quadratic character and the inner product is given by $$(f, g) = \int_{\Gamma_0(N)\backslash \mathcal{H}} f(z)\bar{g}(z) \frac {dx\, dy}{y^2}.$$ We write $f(z) = \sum_n \lambda_f(n) e(nz)$, so that $b(n) = \sum_f c(f) \lambda_f(n)$. We avoid any use of Eichler/Deligne, among other things because it would require us to deal with oldforms carefully. Instead, we use the Petersson formula and Weil's bound for Kloosterman sums (together with Cauchy-Schwarz and Parseval): $$\begin{split} |b(n) |^2 \| S \|_2^{-2} n^{-1} & \leq n^{-1} \sum_f |\lambda_f(n)|^2 \ll 1 + \sum_{c} \frac{1}{c} S_{\chi}(n, n, c) J_1\left(\frac{4\pi n}{c}\right)\\ & \ll 1 + \sum_{c} \frac{(n, c)^{1/2}\tau(c)}{c^{1/2}} \min\left(\frac{n}{c}, \frac{c^{1/2}}{n^{1/2}}\right) \ll_\epsilon n^{1/2 + \epsilon}, \end{split}$$ so that $$b(n) \ll_\epsilon \| S \|_2 n^{3/4 + \epsilon}.$$ We have, by Lemma 4.2 of Blomer (Acta Arith. 114 (2004), 1-21.), $$\| S \|_2 \ll_\epsilon \det(Q)^{2+\epsilon},$$ whence in the end $$b(n) \ll_\epsilon \det(Q)^{2+\epsilon} n^{3/4 + \epsilon} \leq n^{19/20+2\epsilon}.$$ This concludes the proof. We note that for the twisted Kloosterman sum, the Weil-Estermann bound is not always true for higher prime powers, see Section 9 of Knightly-Li (Mem. Amer. Math. Soc. 224 (2013), no. 1055), but it is true for the case of quadratic characters that we are using here.
Added 2. Let me provide the details for the case $k=2$. Without loss of generality, $$Q(x,y)=ax^2+bxy+cy^2$$ is a reduced form. That is, $$|b|\leq a\leq c,\qquad\text{whence also}\qquad a\ll\det(Q)^{1/2}.$$ The equation $Q(x,y)=n$ can be rewritten as $$(2ax+by)^2+4\det(Q)y^2=4an.$$ We can assume that there are (integral) solutions with nonzero $y$, for otherwise there are at most two solutions. In this case, $$n\geq\det(Q)/a\gg a.$$ The equation factors in the ring of integers of an imaginary quadratic number field, hence a standard divisor bound argument combined with the previous display yields that the number of solutions is $$\ll_\epsilon(an)^\epsilon\ll_\epsilon n^{2\epsilon}.$$
GH from MO gave in his answer a bound due to himself and Valentin Blomer of $O(\sigma(n))$. I thought it would be interesting to compute the $O$. Here I'm looking for an effective bound of the form $\leq C \Delta^{-\delta} \sigma(n) + o(\sigma(n))$ where the $C$ is explicit but the little $o$ need not be, so we only need be concerned with the Eisenstein term.
The formula in the cited paper is $$\frac{\pi^2 n}{\sqrt{\Delta/16}} \prod_p \chi(p)$$
Define $f_Q(p)$ to be the max over $n$ of $\frac{\chi(p)}{p^{v_p(\Delta)/2}} (\sum_{t=0}^{v_p(n)} p^{-t}) $
Then the main term
$$\frac{4\pi^2 n}{\sqrt{\Delta}} \prod_p \chi(p) \leq 4\pi^2 \sigma(n) \prod_p f_Q(p)$$
So our goal is to upper bound $f_Q(p)$. According to the paper, for primes not dividing the discriminant $\Delta$, $\chi(p)= \left(1- \left(\frac{\Delta}{p} \right)p^{-2}\right) \sum_{t=0}^{v_p(n)}\left(\frac{\Delta}{p} \right)^t p^t$ so $f_Q(p) = 1- \left(\frac{\Delta}{p} \right)p^{-2}$. So the primes not dividing the discriminant contribute $\prod_p\left(1- \left(\frac{\Delta}{p} p^{-2} \right) \right)= L(\chi_{\sqrt{\Delta}},2)^{-1}$. However for a crude upper bound, we instead use $\chi(p) \leq 1+1/p^2$.
For odd primes dividing the discriminant, the bounds given for $\chi(p)$ depend on whether $p$ divides $n$ or not. If $p$ does not divide $n$, they depend further on $n_1$, which is the rank of the quadratic form mod $p$. In this case $\chi(p) \leq 2$ if the rank is $1$ but is at most $1+1/p$ otherwise. The rank can only be $1$ if $v_p(d) \geq 3$, because each term in the formula for the determinant $d$ of the symmetric matrix will be divisible by $p^3$. If $p$ does not divide $n$, the bound for $f_Q(p)$ is $p^{v_p(d)/6} (1+p^{-2}) (1+p^{-1})$. So we have
$$ f_Q(p) \leq \max \left( \frac{1 + 1/p}{p^{v_p(d)/2}}, \frac{1 + 1_{v_p(d) \geq 3}}{p^{v_p(d)/2}}, \frac{ 1 + p^{-2}}{p^{v_p(d)/3}}\right)$$
The third contribution is always the greatest as long as $(1+1/p) \leq p^{1/6} (1+ 1/p^2)$, which happens for all $p>2$, and $2 \leq \sqrt{p} (1+1/p^2)$, which happens for $p>3$ and only fails by a factor of $.962$ for $p=3$.
The remaining contribution is the local contribution at the prime $2$. The paper gives the bound $4 \cdot 2^{ (v_2(\Delta)-4)/6}$ for $\chi(2)$ and hence $f_Q(2) \leq 2^{4/3} 2^{-v_2(\Delta)/3}$.
Hence $$\prod_p f_Q(p) \leq \frac{2^{4/3}}{(1+1/4)}\frac{2}{\sqrt{3} (1+ 1/9)}\frac{1}{\Delta^{1/3}} \prod_p (1+1/p^2)$$
Using
$$\prod_p (1+ p^{-2}) = \frac{\zeta(2)}{\zeta(4)}=\frac{15}{\pi^2}$$ we get an upper bound for the main term of
$$ \frac{2^{4/3}}{(1+1/4)}\frac{2}{\sqrt{3} (1+ 1/9)}\frac{60 \sigma(n)}{\Delta^{1/3}}= 125.697\dots \frac{\sigma(n)}{\Delta^{1/3}}$$
To get the ratio under $30$, then, we need $\Delta>73$.
Combined with Valentin and GH's arguments, I believe this implies that there are only finitely many counterexamples to "the number of representatives is at most $30 \sigma(n)$" with $\Delta>73$.
It might be possible to prove a sharp bound by:
1) bounding the error term explicitly to eliminate large $\Delta$ counterexamples.
2) Explicitly calculating the main term for medium $\Delta$, instead of using this crude bound, to eliminate medium $\Delta$ counterexamples.
3) Explicitly calculating the main term and showing the error term vanishes for small $\Delta$, explicitly calculating the highest examples.
In a comment under Will Sawin's answer, GH says that it should not be too difficult to find a (relatively small) constant $C$ and a proof for $$ r_Q(n) \leq \, C \; \sigma(n) \, \det(Q)^{-1/9} \; + \; n^{4/5} $$ which, if $C$ were found to be small enough, would give teeth to the computations below.
I did want to see the behavior of specific forms of low discriminant from Nipp's tables, as Jeremy briefly indicated in an email. To get $r(n) \geq 15 \sigma(n)$ we seem to need discriminant $d \leq 21.$ To get $r(n) \geq 20 \sigma(n)$ we seem to need discriminant $d = 4,5.$
I should add that there are infinitely many forms that give $r(1) = 12,$ so that this ratio is at least $12.$ Given any positive integer $T \geq 2,$ $$ ( x^2 + y^2 + z^2 + yz + zx + xy) + T w^2 $$ represents $1$ twelve times.
Discriminant $4$ achieves the ratio $24.$ For $d=5,$ with prime $p \equiv \pm 2 \pmod 5,$ we get $$ r(p) = 30 (p-1) = 30 \; \sigma(p) \cdot \left( \frac{p-1}{p+1} \right) $$
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
d = 5
n reps sigma
ratio 20 1 20 1 1 = 1
ratio 10 2 30 3 2 = 2
ratio 15 3 60 4 3 = 3
ratio 20 5 120 6 5 = 5
ratio 22.5 7 180 8 7 = 7
ratio 25.7142857142857 13 360 14 13 = 13
ratio 26.6666666666667 17 480 18 17 = 17
ratio 27.5 23 660 24 23 = 23
ratio 28.4210526315789 37 1080 38 37 = 37
ratio 28.6363636363636 43 1260 44 43 = 43
ratio 28.75 47 1380 48 47 = 47
ratio 28.8888888888889 53 1560 54 53 = 53
ratio 29.1176470588235 67 1980 68 67 = 67
ratio 29.1891891891892 73 2160 74 73 = 73
ratio 29.2857142857143 83 2460 84 83 = 83
ratio 29.3877551020408 97 2880 98 97 = 97
ratio 29.4230769230769 103 3060 104 103 = 103
ratio 29.4444444444444 107 3180 108 107 = 107
ratio 29.4736842105263 113 3360 114 113 = 113
ratio 29.53125 127 3780 128 127 = 127
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
d 4 record ratio 24 number 1 sigma 1 reps 24
d 5 record ratio 29.6969696969697 number 197 sigma 198 reps 5880
d 8 record ratio 17.8181818181818 number 197 sigma 198 reps 3528
d 9 record ratio 12 number 1 sigma 1 reps 12
d 12 record ratio 19.4117647058824 number 67 sigma 68 reps 1320
d 12 record ratio 19.7979797979798 number 197 sigma 198 reps 3920
d 13 record ratio 13.8585858585859 number 197 sigma 198 reps 2744
d 16 record ratio 8 number 1 sigma 1 reps 8
d 16 record ratio 12 number 1 sigma 1 reps 12
d 17 record ratio 8.91 number 199 sigma 200 reps 1782
d 20 record ratio 17.8181818181818 number 197 sigma 198 reps 3528
d 20 record ratio 13.7142857142857 number 194 sigma 294 reps 4032
d 20 record ratio 11.8787878787879 number 197 sigma 198 reps 2352
d 21 record ratio 15.8383838383838 number 197 sigma 198 reps 3136
d 21 record ratio 15.84 number 199 sigma 200 reps 3168
d 24 record ratio 11.88 number 199 sigma 200 reps 2376
d 24 record ratio 12 number 1 sigma 1 reps 12
d 24 record ratio 11.8666666666667 number 179 sigma 180 reps 2136
d 25 record ratio 6 number 1 sigma 1 reps 6
d 28 record ratio 9.89010989010989 number 181 sigma 182 reps 1800
d 28 record ratio 12 number 1 sigma 1 reps 12
d 28 record ratio 9.89583333333333 number 191 sigma 192 reps 1900
d 29 record ratio 10 number 5 sigma 6 reps 60
d 29 record ratio 12 number 1 sigma 1 reps 12
d 32 record ratio 9.8989898989899 number 197 sigma 198 reps 1960
d 32 record ratio 11.8787878787879 number 197 sigma 198 reps 2352
d 32 record ratio 12 number 1 sigma 1 reps 12
d 32 record ratio 8.46031746031746 number 166 sigma 252 reps 2132
d 32 record ratio 11.8666666666667 number 179 sigma 180 reps 2136
d 33 record ratio 8 number 1 sigma 1 reps 8
d 33 record ratio 7.91752577319588 number 193 sigma 194 reps 1536
d 33 record ratio 7.91666666666667 number 191 sigma 192 reps 1520
d 36 record ratio 12 number 1 sigma 1 reps 12
d 36 record ratio 12 number 5 sigma 6 reps 72
d 36 record ratio 8 number 1 sigma 1 reps 8
d 36 record ratio 11.9504132231405 number 81 sigma 121 reps 1446
d 36 record ratio 7.9843137254902 number 128 sigma 255 reps 2036
d 37 record ratio 12 number 1 sigma 1 reps 12
d 37 record ratio 7.54166666666667 number 191 sigma 192 reps 1448
d 40 record ratio 12 number 1 sigma 1 reps 12
d 40 record ratio 7.75257731958763 number 193 sigma 194 reps 1504
d 40 record ratio 7.92156862745098 number 101 sigma 102 reps 808
d 40 record ratio 7.84 number 149 sigma 150 reps 1176
d 41 record ratio 8 number 1 sigma 1 reps 8
d 41 record ratio 5.33333333333333 number 2 sigma 3 reps 16
d 44 record ratio 8.64 number 149 sigma 150 reps 1296
d 44 record ratio 8.55172413793103 number 173 sigma 174 reps 1488
d 44 record ratio 12 number 1 sigma 1 reps 12
d 44 record ratio 8.53658536585366 number 163 sigma 164 reps 1400
d 45 record ratio 11.8787878787879 number 197 sigma 198 reps 2352
d 45 record ratio 12 number 1 sigma 1 reps 12
d 45 record ratio 11.8762886597938 number 193 sigma 194 reps 2304
d 45 record ratio 11.5555555555556 number 159 sigma 216 reps 2496
d 45 record ratio 11.8787878787879 number 197 sigma 198 reps 2352
d 48 record ratio 11.8787878787879 number 197 sigma 198 reps 2352
d 48 record ratio 9.8989898989899 number 197 sigma 198 reps 1960
d 48 record ratio 9.8989898989899 number 197 sigma 198 reps 1960
d 48 record ratio 12 number 1 sigma 1 reps 12
d 48 record ratio 9.9 number 199 sigma 200 reps 1980
d 48 record ratio 9.12592592592593 number 178 sigma 270 reps 2464
d 48 record ratio 11.88 number 199 sigma 200 reps 2376
d 48 record ratio 12 number 11 sigma 12 reps 144
d 48 record ratio 9.1 number 158 sigma 240 reps 2184
d 49 record ratio 4 number 1 sigma 1 reps 4
d 52 record ratio 6.53061224489796 number 194 sigma 294 reps 1920
d 52 record ratio 6.40740740740741 number 142 sigma 216 reps 1384
d 52 record ratio 12 number 1 sigma 1 reps 12
d 52 record ratio 8.36842105263158 number 151 sigma 152 reps 1272
d 52 record ratio 5.57894736842105 number 151 sigma 152 reps 848
d 52 record ratio 6 number 1 sigma 1 reps 6
d 53 record ratio 8.12903225806452 number 61 sigma 62 reps 504
d 53 record ratio 12 number 1 sigma 1 reps 12
d 53 record ratio 8 number 11 sigma 12 reps 96
d 56 record ratio 8 number 1 sigma 1 reps 8
d 56 record ratio 7.31578947368421 number 151 sigma 152 reps 1112
d 56 record ratio 7.46666666666667 number 89 sigma 90 reps 672
d 56 record ratio 12 number 1 sigma 1 reps 12
d 56 record ratio 7.15151515151515 number 131 sigma 132 reps 944
d 57 record ratio 8 number 1 sigma 1 reps 8
d 57 record ratio 5.67708333333333 number 191 sigma 192 reps 1090
d 57 record ratio 5.69072164948454 number 193 sigma 194 reps 1104
d 57 record ratio 6 number 1 sigma 1 reps 6
d 60 record ratio 9.89690721649485 number 193 sigma 194 reps 1920
d 60 record ratio 12 number 1 sigma 1 reps 12
d 60 record ratio 9.89690721649485 number 193 sigma 194 reps 1920
d 60 record ratio 9.86666666666667 number 149 sigma 150 reps 1480
d 60 record ratio 9.86666666666667 number 149 sigma 150 reps 1480
d 60 record ratio 9.9 number 199 sigma 200 reps 1980
d 60 record ratio 9.9 number 199 sigma 200 reps 1980
d 60 record ratio 9.88095238095238 number 167 sigma 168 reps 1660
d 61 record ratio 12 number 1 sigma 1 reps 12
d 61 record ratio 6 number 5 sigma 6 reps 36
d 61 record ratio 6 number 1 sigma 1 reps 6
d 64 record ratio 6 number 1 sigma 1 reps 6
d 64 record ratio 12 number 1 sigma 1 reps 12
d 64 record ratio 6.66666666666667 number 5 sigma 6 reps 40
d 64 record ratio 4 number 1 sigma 1 reps 4
d 64 record ratio 6 number 1 sigma 1 reps 6
d 64 record ratio 6 number 1 sigma 1 reps 6
d 64 record ratio 6 number 3 sigma 4 reps 24
d 65 record ratio 8 number 1 sigma 1 reps 8
d 65 record ratio 5.24137931034483 number 173 sigma 174 reps 912
d 65 record ratio 5.28 number 149 sigma 150 reps 792
d 65 record ratio 6 number 1 sigma 1 reps 6
d 68 record ratio 9.6 number 19 sigma 20 reps 192
d 68 record ratio 12 number 1 sigma 1 reps 12
d 68 record ratio 8 number 1 sigma 1 reps 8
d 68 record ratio 6.09523809523809 number 41 sigma 42 reps 256
d 68 record ratio 6.12371134020619 number 193 sigma 194 reps 1188
d 68 record ratio 5.33888888888889 number 184 sigma 360 reps 1922
d 68 record ratio 5.32549019607843 number 128 sigma 255 reps 1358
d 69 record ratio 8.57142857142857 number 13 sigma 14 reps 120
d 69 record ratio 12 number 1 sigma 1 reps 12
d 69 record ratio 7.92 number 199 sigma 200 reps 1584
d 69 record ratio 7.92 number 199 sigma 200 reps 1584
d 69 record ratio 7.91919191919192 number 197 sigma 198 reps 1568
d 72 record ratio 8 number 1 sigma 1 reps 8
d 72 record ratio 7.33333333333333 number 83 sigma 84 reps 616
d 72 record ratio 12 number 1 sigma 1 reps 12
d 72 record ratio 7.16483516483517 number 181 sigma 182 reps 1304
d 72 record ratio 7.13924050632911 number 157 sigma 158 reps 1128
d 72 record ratio 7.33333333333333 number 83 sigma 84 reps 616
d 72 record ratio 7.15151515151515 number 131 sigma 132 reps 944
d 72 record ratio 7 number 159 sigma 216 reps 1512
d 72 record ratio 6.96774193548387 number 183 sigma 248 reps 1728
d 73 record ratio 4 number 1 sigma 1 reps 4
d 73 record ratio 6 number 1 sigma 1 reps 6
d 73 record ratio 4 number 2 sigma 3 reps 12
d 76 record ratio 12 number 1 sigma 1 reps 12
d 76 record ratio 5.42857142857143 number 139 sigma 140 reps 760
d 76 record ratio 5.24390243902439 number 163 sigma 164 reps 860
d 76 record ratio 6 number 1 sigma 1 reps 6
d 76 record ratio 5.31868131868132 number 181 sigma 182 reps 968
d 76 record ratio 6 number 1 sigma 1 reps 6
d 77 record ratio 12 number 1 sigma 1 reps 12
d 77 record ratio 8.10989010989011 number 181 sigma 182 reps 1476
d 77 record ratio 7.96153846153846 number 103 sigma 104 reps 828
d 77 record ratio 8.18181818181818 number 109 sigma 110 reps 900
d 77 record ratio 8.08 number 149 sigma 150 reps 1212
d 80 record ratio 12 number 1 sigma 1 reps 12
d 80 record ratio 9 number 167 sigma 168 reps 1512
d 80 record ratio 6 number 1 sigma 1 reps 6
d 80 record ratio 8 number 1 sigma 1 reps 8
d 80 record ratio 7.4639175257732 number 193 sigma 194 reps 1448
d 80 record ratio 8.90909090909091 number 197 sigma 198 reps 1764
d 80 record ratio 5.93939393939394 number 197 sigma 198 reps 1176
d 80 record ratio 7.58823529411765 number 67 sigma 68 reps 516
d 80 record ratio 7.42307692307692 number 103 sigma 104 reps 772
d 80 record ratio 5.87755102040816 number 194 sigma 294 reps 1728
d 80 record ratio 5.87755102040816 number 194 sigma 294 reps 1728
d 80 record ratio 7.39285714285714 number 188 sigma 336 reps 2484
d 81 record ratio 8 number 1 sigma 1 reps 8
d 81 record ratio 4.7 number 19 sigma 20 reps 94
d 81 record ratio 4 number 1 sigma 1 reps 4
d 81 record ratio 6 number 1 sigma 1 reps 6
d 81 record ratio 6 number 2 sigma 3 reps 18
d 84 record ratio 12 number 1 sigma 1 reps 12
d 84 record ratio 9.52747252747253 number 181 sigma 182 reps 1734
d 84 record ratio 7.35135135135135 number 146 sigma 222 reps 1632
d 84 record ratio 7.30612244897959 number 194 sigma 294 reps 2148
d 84 record ratio 8 number 1 sigma 1 reps 8
d 84 record ratio 6.4 number 179 sigma 180 reps 1152
d 84 record ratio 6.33333333333333 number 191 sigma 192 reps 1216
d 84 record ratio 6.35164835164835 number 181 sigma 182 reps 1156
d 84 record ratio 6.36 number 199 sigma 200 reps 1272
d 84 record ratio 7.25925925925926 number 142 sigma 216 reps 1568
d 84 record ratio 7.25925925925926 number 142 sigma 216 reps 1568
d 84 record ratio 9.56521739130435 number 137 sigma 138 reps 1320
d 84 record ratio 9.6 number 179 sigma 180 reps 1728
d 85 record ratio 12 number 1 sigma 1 reps 12
d 85 record ratio 6.26086956521739 number 137 sigma 138 reps 864
d 85 record ratio 6.03846153846154 number 103 sigma 104 reps 628
d 85 record ratio 6.10909090909091 number 109 sigma 110 reps 672
d 85 record ratio 6.4 number 29 sigma 30 reps 192
d 85 record ratio 6.10989010989011 number 181 sigma 182 reps 1112
d 88 record ratio 12 number 1 sigma 1 reps 12
d 88 record ratio 4.69230769230769 number 103 sigma 104 reps 488
d 88 record ratio 6 number 1 sigma 1 reps 6
d 88 record ratio 4.68 number 199 sigma 200 reps 936
d 88 record ratio 6 number 1 sigma 1 reps 6
d 88 record ratio 6 number 1 sigma 1 reps 6
d 88 record ratio 5 number 3 sigma 4 reps 20
d 89 record ratio 8 number 1 sigma 1 reps 8
d 89 record ratio 4.22222222222222 number 17 sigma 18 reps 76
d 89 record ratio 4 number 1 sigma 1 reps 4
d 89 record ratio 3.71428571428571 number 4 sigma 7 reps 26
d 92 record ratio 12 number 1 sigma 1 reps 12
d 92 record ratio 6 number 1 sigma 1 reps 6
d 92 record ratio 8 number 1 sigma 1 reps 8
d 92 record ratio 6.46666666666667 number 29 sigma 30 reps 194
d 92 record ratio 5.93406593406593 number 181 sigma 182 reps 1080
d 92 record ratio 6 number 1 sigma 1 reps 6
d 92 record ratio 5.93333333333333 number 179 sigma 180 reps 1068
d 93 record ratio 12 number 1 sigma 1 reps 12
d 93 record ratio 7.15714285714286 number 139 sigma 140 reps 1002
d 93 record ratio 7.125 number 31 sigma 32 reps 228
d 93 record ratio 8 number 1 sigma 1 reps 8
d 93 record ratio 7.5 number 23 sigma 24 reps 180
d 93 record ratio 7.02777777777778 number 71 sigma 72 reps 506
d 96 record ratio 12 number 1 sigma 1 reps 12
d 96 record ratio 8.45454545454546 number 43 sigma 44 reps 372
d 96 record ratio 6.88888888888889 number 107 sigma 108 reps 744
d 96 record ratio 6.72463768115942 number 137 sigma 138 reps 928
d 96 record ratio 8 number 1 sigma 1 reps 8
d 96 record ratio 7.91208791208791 number 181 sigma 182 reps 1440
d 96 record ratio 7.91208791208791 number 181 sigma 182 reps 1440
d 96 record ratio 6.6 number 199 sigma 200 reps 1320
d 96 record ratio 7.92 number 199 sigma 200 reps 1584
d 96 record ratio 7.92 number 199 sigma 200 reps 1584
d 96 record ratio 7.92 number 199 sigma 200 reps 1584
d 96 record ratio 5.73333333333333 number 118 sigma 180 reps 1032
d 96 record ratio 5.65079365079365 number 166 sigma 252 reps 1424
d 96 record ratio 5.63333333333333 number 158 sigma 240 reps 1352
d 96 record ratio 5.63333333333333 number 158 sigma 240 reps 1352
d 96 record ratio 7.88405797101449 number 137 sigma 138 reps 1088
d 96 record ratio 8 number 5 sigma 6 reps 48
d 96 record ratio 7.91111111111111 number 179 sigma 180 reps 1424
d 97 record ratio 4 number 1 sigma 1 reps 4
d 97 record ratio 6 number 1 sigma 1 reps 6
d 97 record ratio 3.5 number 3 sigma 4 reps 14
d 97 record ratio 3.33333333333333 number 2 sigma 3 reps 10
d 100 record ratio 12 number 1 sigma 1 reps 12
d 100 record ratio 6 number 3 sigma 4 reps 24
d 100 record ratio 6.28571428571429 number 13 sigma 14 reps 88
d 100 record ratio 6 number 1 sigma 1 reps 6
d 100 record ratio 7.97435897435897 number 125 sigma 156 reps 1244
d 100 record ratio 6 number 1 sigma 1 reps 6
d 100 record ratio 5 number 3 sigma 4 reps 20
d 100 record ratio 3.9921568627451 number 128 sigma 255 reps 1018
d 101 record ratio 12 number 1 sigma 1 reps 12
d 101 record ratio 8 number 1 sigma 1 reps 8
d 101 record ratio 6 number 19 sigma 20 reps 120
d 101 record ratio 6 number 5 sigma 6 reps 36
d 101 record ratio 6 number 1 sigma 1 reps 6
d 104 record ratio 12 number 1 sigma 1 reps 12
d 104 record ratio 5.06122448979592 number 97 sigma 98 reps 496
d 104 record ratio 5.15463917525773 number 193 sigma 194 reps 1000
d 104 record ratio 5.22448979591837 number 97 sigma 98 reps 512
d 104 record ratio 6 number 1 sigma 1 reps 6
d 104 record ratio 8 number 1 sigma 1 reps 8
d 104 record ratio 5.33333333333333 number 5 sigma 6 reps 32
d 104 record ratio 5.11392405063291 number 157 sigma 158 reps 808
d 105 record ratio 8 number 1 sigma 1 reps 8
d 105 record ratio 6 number 1 sigma 1 reps 6
d 105 record ratio 5.27835051546392 number 193 sigma 194 reps 1024
d 105 record ratio 5.37931034482759 number 173 sigma 174 reps 936
d 105 record ratio 5.30952380952381 number 167 sigma 168 reps 892
d 105 record ratio 5.375 number 191 sigma 192 reps 1032
d 105 record ratio 5.26666666666667 number 179 sigma 180 reps 948
d 105 record ratio 6 number 1 sigma 1 reps 6
d 105 record ratio 5.28 number 199 sigma 200 reps 1056
d 105 record ratio 6 number 1 sigma 1 reps 6
d 105 record ratio 5.29032258064516 number 61 sigma 62 reps 328
d 108 record ratio 12 number 1 sigma 1 reps 12
d 108 record ratio 6.6 number 199 sigma 200 reps 1320
d 108 record ratio 6.609375 number 127 sigma 128 reps 846
d 108 record ratio 6.65853658536585 number 163 sigma 164 reps 1092
d 108 record ratio 8 number 1 sigma 1 reps 8
d 108 record ratio 7.46666666666667 number 29 sigma 30 reps 224
d 108 record ratio 7.15909090909091 number 129 sigma 176 reps 1260
d 108 record ratio 7.15909090909091 number 129 sigma 176 reps 1260
d 108 record ratio 6.74747474747475 number 197 sigma 198 reps 1336
d 108 record ratio 6.64367816091954 number 173 sigma 174 reps 1156
d 108 record ratio 6.63636363636364 number 197 sigma 198 reps 1314
d 108 record ratio 6.66666666666667 number 11 sigma 12 reps 80
d 108 record ratio 9.9 number 199 sigma 200 reps 1980
d 108 record ratio 7.22222222222222 number 159 sigma 216 reps 1560
d 108 record ratio 9.8989898989899 number 197 sigma 198 reps 1960
d 109 record ratio 12 number 1 sigma 1 reps 12
d 109 record ratio 6 number 1 sigma 1 reps 6
d 109 record ratio 5.33333333333333 number 5 sigma 6 reps 32
d 109 record ratio 6 number 1 sigma 1 reps 6
d 109 record ratio 4.5 number 3 sigma 4 reps 18
d 112 record ratio 12 number 1 sigma 1 reps 12
d 112 record ratio 6 number 3 sigma 4 reps 24
d 112 record ratio 6 number 1 sigma 1 reps 6
d 112 record ratio 5.93406593406593 number 181 sigma 182 reps 1080
d 112 record ratio 6 number 1 sigma 1 reps 6
d 112 record ratio 6 number 1 sigma 1 reps 6
d 112 record ratio 5.02083333333333 number 191 sigma 192 reps 964
d 112 record ratio 5.05494505494505 number 181 sigma 182 reps 920
d 112 record ratio 5.05494505494505 number 181 sigma 182 reps 920
d 112 record ratio 6 number 1 sigma 1 reps 6
d 112 record ratio 5.06122448979592 number 97 sigma 98 reps 496
d 112 record ratio 4.57142857142857 number 194 sigma 294 reps 1344
d 112 record ratio 4.57142857142857 number 194 sigma 294 reps 1344
d 112 record ratio 4.66666666666667 number 2 sigma 3 reps 14
d 112 record ratio 5.9375 number 191 sigma 192 reps 1140
d 112 record ratio 4.55 number 158 sigma 240 reps 1092
d 113 record ratio 8 number 1 sigma 1 reps 8
d 113 record ratio 4 number 1 sigma 1 reps 4
d 113 record ratio 6 number 1 sigma 1 reps 6
d 113 record ratio 3.71428571428571 number 4 sigma 7 reps 26
d 113 record ratio 3.41666666666667 number 71 sigma 72 reps 246
d 116 record ratio 8 number 1 sigma 1 reps 8
d 116 record ratio 4.09523809523809 number 41 sigma 42 reps 172
d 116 record ratio 4.66666666666667 number 5 sigma 6 reps 28
d 116 record ratio 6 number 1 sigma 1 reps 6
d 116 record ratio 4 number 7 sigma 8 reps 32
d 116 record ratio 12 number 1 sigma 1 reps 12
d 116 record ratio 6.66666666666667 number 5 sigma 6 reps 40
d 116 record ratio 6.14285714285714 number 41 sigma 42 reps 258
d 116 record ratio 6 number 1 sigma 1 reps 6
d 116 record ratio 4.60215053763441 number 122 sigma 186 reps 856
d 116 record ratio 4.66666666666667 number 2 sigma 3 reps 14
d 117 record ratio 8 number 1 sigma 1 reps 8
d 117 record ratio 7.33333333333333 number 17 sigma 18 reps 132
d 117 record ratio 12 number 1 sigma 1 reps 12
d 117 record ratio 6.92783505154639 number 193 sigma 194 reps 1344
d 117 record ratio 6.94736842105263 number 151 sigma 152 reps 1056
d 117 record ratio 6.92783505154639 number 193 sigma 194 reps 1344
d 117 record ratio 6.04615384615385 number 171 sigma 260 reps 1572
d 117 record ratio 6.06153846153846 number 171 sigma 260 reps 1576
d 117 record ratio 6.97619047619048 number 167 sigma 168 reps 1172
d 117 record ratio 6.98550724637681 number 137 sigma 138 reps 964
d 120 record ratio 8 number 1 sigma 1 reps 8
d 120 record ratio 6.25287356321839 number 173 sigma 174 reps 1088
d 120 record ratio 6.30952380952381 number 167 sigma 168 reps 1060
d 120 record ratio 12 number 1 sigma 1 reps 12
d 120 record ratio 6.43298969072165 number 193 sigma 194 reps 1248
d 120 record ratio 6.30927835051546 number 193 sigma 194 reps 1224
d 120 record ratio 6.36734693877551 number 97 sigma 98 reps 624
d 120 record ratio 6.48484848484848 number 131 sigma 132 reps 856
d 120 record ratio 6.54545454545455 number 131 sigma 132 reps 864
d 120 record ratio 6.4 number 89 sigma 90 reps 576
d 120 record ratio 6.31111111111111 number 179 sigma 180 reps 1136
d 120 record ratio 6.41758241758242 number 181 sigma 182 reps 1168
d 120 record ratio 6.61818181818182 number 109 sigma 110 reps 728
d 120 record ratio 6.46153846153846 number 181 sigma 182 reps 1176
d 121 record ratio 4 number 1 sigma 1 reps 4
d 121 record ratio 6 number 1 sigma 1 reps 6
d 121 record ratio 4 number 2 sigma 3 reps 12
d 124 record ratio 12 number 1 sigma 1 reps 12
d 124 record ratio 6 number 1 sigma 1 reps 6
d 124 record ratio 4.61904761904762 number 41 sigma 42 reps 194
d 124 record ratio 4.19354838709677 number 25 sigma 31 reps 130
d 124 record ratio 5.33333333333333 number 5 sigma 6 reps 32
d 124 record ratio 4.30769230769231 number 9 sigma 13 reps 56
d 124 record ratio 6 number 1 sigma 1 reps 6
d 124 record ratio 4 number 47 sigma 48 reps 192
d 124 record ratio 4.02439024390244 number 163 sigma 164 reps 660
d 125 record ratio 8 number 1 sigma 1 reps 8
d 125 record ratio 12 number 1 sigma 1 reps 12
d 125 record ratio 6.15625 number 127 sigma 128 reps 788
d 125 record ratio 6.32432432432432 number 73 sigma 74 reps 468
d 125 record ratio 6 number 103 sigma 104 reps 624
d 125 record ratio 6 number 1 sigma 1 reps 6
d 125 record ratio 9.8989898989899 number 197 sigma 198 reps 1960
d 125 record ratio 7.89473684210526 number 185 sigma 228 reps 1800
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=