Why can't I access C# protected members except like this?

The reason this doesn't work is because C# doesn't allow cross-hierarchy calling of protected methods. Say there was a class E that also derived from C:

  C
 / \
D   E

Then the reference you're trying to call the method on could actually be an instance of type E and thus the method could resolve at runtime to E.F. This is not permitted in C# as D cannot call E's protected methods, because E is in another branch of the hierarchy, i.e.

var d = new D();
var e = new E();
d.G(e); // oops, now this will call E.F which isn't allowed from D

This makes sense because the keyword protected means the member "is accessible within its class and by derived class instances" and E.F is not a member of D.


The "protected" keyword means that only a type and types that derive from that type can access the member. D has no relationship to C therefore cannot access the member.

You have a couple of options if you want to be able to access that member

  • Make it public
  • Make it internal. This will allow any types to access the member within the same assembly (or other assemblies should you add friend's)
  • Derive D from C

EDIT

This scenario is called out in section 3.5.3 of the C# spec.

The reason this is not allowed is because it would allow for cross hierarchy calls. Imagine that in addition to D, there was another base class of C called E. If your code could compile it would allow D to access the member E.F. This type of scenario is not allowed in C# (and I believe the CLR but I don't 100% know).

EDIT2 Why this is bad

Caveat, this is my opinion

The reason this is now allowed is it makes it very difficult to reason about the behavior of a class. The goal of access modifiers is to give the developer control over exactly who can access specific methods. Imagine the following class

sealed class MyClass : C {
  override F(D d) { ... } 
}

Consider what happens if F is a somewhat time critical function. With the current behavior I can reason about the correctness of my class. After all there are only two cases where MyClass.F will be called.

  1. Where it's invoked in C
  2. Where I explicitly invoke it in MyClass

I can examine these calls and come to a reasonable conclusion about how MyClass functions.

Now, if C# does allow cross hierarchy protected access I can make no such guarantee. Anyone in a completely different assembly can come by and derive from C. Then they can call MyClass.F at will. This makes it completely impossible to reason about the correctness of my class.


Even though D is inherits from C, D cannot access C's protected members. D can access D's protected (and private!) members, so if you put another instance of D in there instead of C everything would work. But as Greg stated, C could really be something completely different, and because the compiler doesn't know what C really is, it has to prevent D from accessing something D may not actually be able to access.

A series of posts explaining this from the C# compiler's perspective:

  • Why Can't I Access A Protected Member From A Derived Class
  • Why Can't I Access A Protected Member From A Derived Class, Part Two: Why Can I?