Why does Mathematica order polynomial forms in reverse from traditional order?
As Daniel Lichtblau wrote in the comment you can use TraditionalForm
Expand[(x^2 - 1) ((-3 + x)^2 - 4)] // TraditionalForm
$x^4-6 x^3+4 x^2+6 x-5$
However, it works perfectly only with univariate polynomials
Expand[(x + y + 1)^5] // TraditionalForm
$x^5+5 x^4 y+5 x^4+10 x^3 y^2+20 x^3 y+10 x^3+10 x^2 y^3+30 x^2 y^2+30 x^2 y+10 x^2+5 x y^4+20 x y^3+30 x y^2+20 x y+5 x+y^5+5 y^4+10 y^3+10 y^2+5 y+1$
You can see that $5x$ is before $y^5$ and so on.
My solution consist in the manual sorting of monomials
OrderedForm = HoldForm[+##] & @@ MonomialList[#][[
Ordering[Total[#] & @@@ CoefficientRules[#], All, GreaterEqual]]] &;
Expand[(x + y + 1)^5] // OrderedForm
x^5+5 x^4 y+10 x^3 y^2+10 x^2 y^3+5 x y^4+y^5+5 x^4+20 x^3 y+30 x^2 y^2+20 x y^3+5 y^4+ 10 x^3+30 x^2 y+30 x y^2+10 y^3+10 x^2+20 x y+10 y^2+5 x+5 y+1