Why doesn't pointwise bounded imply uniform bounded?
The short answer is: there need not be a real number that is the supremum of the values of $\phi(x)$. You may have $\sup\{\phi(x)\mid x \in E\} = \infty$. If that is the case, you're out of luck.
The short answer is: there need not be a real number that is the supremum of the values of $\phi(x)$. You may have $\sup\{\phi(x)\mid x \in E\} = \infty$. If that is the case, you're out of luck.