Why is a ternary operator with two constants faster than one with a variable?

First, let's rewrite the benchmark with JMH to avoid common benchmarking pitfalls.

public class FloatCompare {

    @Benchmark
    public float cmp() {
        float num = ThreadLocalRandom.current().nextFloat() * 2 - 1;
        return num < 0 ? 0 : num;
    }

    @Benchmark
    public float mul() {
        float num = ThreadLocalRandom.current().nextFloat() * 2 - 1;
        return num * (num < 0 ? 0 : 1);
    }
}

JMH also suggests that the multiplication code is a way faster:

Benchmark         Mode  Cnt   Score   Error  Units
FloatCompare.cmp  avgt    5  12,940 ± 0,166  ns/op
FloatCompare.mul  avgt    5   6,182 ± 0,101  ns/op

Now it's time to engage perfasm profiler (built into JMH) to see the assembly produced by JIT compiler. Here are the most important parts of the output (comments are mine):

cmp method:

  5,65%  │││  0x0000000002e717d0: vxorps  xmm1,xmm1,xmm1  ; xmm1 := 0
  0,28%  │││  0x0000000002e717d4: vucomiss xmm1,xmm0      ; compare num < 0 ?
  4,25%  │╰│  0x0000000002e717d8: jbe     2e71720h        ; jump if num >= 0
  9,77%  │ ╰  0x0000000002e717de: jmp     2e71711h        ; jump if num < 0

mul method:

  1,59%  ││  0x000000000321f90c: vxorps  xmm1,xmm1,xmm1    ; xmm1 := 0
  3,80%  ││  0x000000000321f910: mov     r11d,1h           ; r11d := 1
         ││  0x000000000321f916: xor     r8d,r8d           ; r8d := 0
         ││  0x000000000321f919: vucomiss xmm1,xmm0        ; compare num < 0 ?
  2,23%  ││  0x000000000321f91d: cmovnbe r11d,r8d          ; r11d := r8d if num < 0
  5,06%  ││  0x000000000321f921: vcvtsi2ss xmm1,xmm1,r11d  ; xmm1 := (float) r11d
  7,04%  ││  0x000000000321f926: vmulss  xmm0,xmm1,xmm0    ; multiply

The key difference is that there's no jump instructions in the mul method. Instead, conditional move instruction cmovnbe is used.

cmov works with integer registers. Since (num < 0 ? 0 : 1) expression uses integer constants on the right side, JIT is smart enough to emit a conditional move instead of a conditional jump.

In this benchmark, conditional jump is very inefficient, since branch prediction often fails due to random nature of numbers. That's why the branchless code of mul method appears faster.

If we modify the benchmark in a way that one branch prevails over another, e.g by replacing

ThreadLocalRandom.current().nextFloat() * 2 - 1

with

ThreadLocalRandom.current().nextFloat() * 2 - 0.1f

then the branch prediction will work better, and cmp method will become as fast as mul:

Benchmark         Mode  Cnt  Score   Error  Units
FloatCompare.cmp  avgt    5  5,793 ± 0,045  ns/op
FloatCompare.mul  avgt    5  5,764 ± 0,048  ns/op

I have not investigated the code generated by the java compiler or the JIT generator, but when writing compilers, I usually detect and optimize ternary operators that perform boolean to integer conversions: (num < 0 ? 0 : 1) converts the boolean value to one of 2 integer constants. In C this particular code could be rewritten as !(num < 0). This conversion can produce branchless code, which would beat the branching code generated for (num < 0 ? 0 : num) on modern CPUs, even with an additional multiplication opcode. Note however that it is rather easy to produce branchless code for (num < 0 ? 0 : num) too, but the java compiler / JIT generator might not.


I have discovered what makes the second statement take longer, but I cannot explain why it happens, if that makes sense. That said, I do believe this should gives some greater insight into the issue we have here.

Before I explain my reasoning I'll just tell you my discoveries outright: This has nothing to do with returning a constant or a variable from a ternary operation. It has everything to do with returning an integer or a float from a ternary operation. It comes down to this: returning a float from a ternary operation is "significantly" slower than returning an integer.

I cannot explain why, but that is the root cause at least.

Here's my reasoning: I used the following code to create a small text document with results, very similar to your example code.

        Random rand = new Random();
        final int intOne = 1;
        final int intZero = 0;
        final float floatOne = 1f;
        final float floatZero = 0f;

        final long startTime = System.nanoTime();

        float[] results = new float[100000000];
        for (int i = 0; i < 100000000; i++) {
            float num = (rand.nextFloat() * 2) - 1;
//            results[i] = num < 0 ? 0 : num;
//            results[i] = num * (num < 0 ? 0 : 1);

//            results[i] = num < 0 ? 0 : 1;
//            results[i] = (num < 0 ? 0 : 1);
//            results[i] = (num < 0 ? 0 : num);
//            results[i] = 1 * (num < 0 ? 0 : num);

//            results[i] = num < 0 ? 0 : one;
//            results[i] = num < 0 ? 0 : 1f;
//            results[i] = (num < 0 ? 0 : one);
//            results[i] = (num < 0 ? 0 : 1f);
//            results[i] = (num < 0 ? 0 : 1);

//            results[i] = (num < 0 ? 0f : 1f);
//            results[i] = (num < 0 ? 0 : 1);
//            results[i] = (num < 0 ? floatZero : floatOne);
//            results[i] = (num < 0 ? intZero : intOne);

//            results[i] = num < 0 ? intZero : intOne;

//            results[i] = num * (num < 0 ? 0 : 1);
//            results[i] = num * (num < 0 ? 0f : 1f);
//            results[i] = num < 0 ? 0 : num;
        }

        final long endTime = System.nanoTime();

        String str = (endTime - startTime) + "\n";
        System.out.println(str);
        Files.write(Paths.get("test.txt"), str.getBytes(), StandardOpenOption.APPEND);

For reasons I won't go into now but you can read about here, I used nanoTime() instead of currentTimeMillis(). The last line just adds the resulting time value to a text document so i can easily add comments.

Here's the final text document, it includes the entire process of how I came to this conclusion:


    num < 0 ? 0 : num       // standard "intuitive" operation
    1576953800
    1576153599
    1579074600
    1564152100
    1571285399
    
    num * (num < 0 ? 0 : 1)    // strange operation that is somehow faster
    1358461100
    1347008700
    1356969200
    1343784400
    1336910000
    
    // let's remove the multiplication and focus on the ternary operation
    
    num < 0 ? 0 : 1     // without the multiplication, it is actually slower...?
    1597369200
    1586133701
    1596085700
    1657377000
    1581246399
    
    (num < 0 ? 0 : 1)     // Weird, adding the brackets back speeds it up
    1797034199
    1294372700
    1301998000
    1286479500
    1326545900
    
    (num < 0 ? 0 : num)     // adding brackets to the original operation does NOT speed it up.
    1611220001
    1585651599
    1565149099
    1728256000
    1590789800
    
    1 * (num < 0 ? 0 : num)    // the speedup is not simply from multiplication
    1588769201
    1587232199
    1589958400
    1576397900
    1599809000
    
    // Let's leave the return value out of this now, we'll just return either 0 or 1.
    
    num < 0 ? 0 : one  // returning 1f, but from a variable
    1522992400
    1590028200
    1605736200
    1578443700
    1625144700
    
    num < 0 ? 0 : 1f   // returning 1f as a constant
    1583525400
    1570701000
    1577192000
    1657662601
    1633414701
    
    // from the last 2 tests we can assume that returning a variable or returning a constant has no significant speed difference.
    // let's add the brackets back and see if that still holds up.
    
    (num < 0 ? 0 : floatOne)  // 1f as variable, but with ()
    1573152100
    1521046800
    1534993700
    1630885300
    1581605100
    
    (num < 0 ? 0 : 1f)  // 1f as constant, with ()
    1589591100
    1566956800
    1540122501
    1767168100
    1591344701
    // strangely this is not faster, where before it WAS. The only difference is that I now wrote 1f instead of 1.
    
    (num < 0 ? 0 : 1)  // lets replace 1f with 1 again, then.
    1277688700
    1284385000
    1291326300
    1307219500
    1307150100
    // the speedup is back!
    // It would seem the speedup comes from returning an integer rather than a float. (and also using brackets around the operation.. somehow)
    
    // Let's try to confirm this by replacing BOTH return values with floats, or integers.
    // We're also keeping the brackets around everything, since that appears to be required for the speedup
    
    (num < 0 ? 0f : 1f)
    1572555600
    1583899100
    1595343300
    1607957399
    1593920499
    
    (num < 0 ? 0 : 1)
    1389069400
    1296926500
    1282131801
    1283952900
    1284215401
    
    // looks promising, now lets try the same but with variables
    // final int intOne = 1;
    // final int intZero = 0;
    // final float floatOne = 1f;
    // final float floatZero = 0f;
    
    (num < 0 ? floatZero : floatOne)
    1596659301
    1600570100
    1540921200
    1582599101
    1596192400
    
    (num < 0 ? intZero : intOne)
    1280634300
    1300473900
    1304816100
    1285289801
    1286386900
    
    // from the looks of it, using a variable or constant makes no significant difference, it definitely has to do with the return type.
    
    // That said, this is still only noticeable when using brackets around the operation, without them the int operation is still slow:
    
    num < 0 ? intZero : intOne
    1567954899
    1565483600
    1593726301
    1652833999
    1545883500
    
    // lastly, lets add the multiplication with num back, knowing what we know now.
    
    num * (num < 0 ? 0 : 1)    // the original fast operation, note how it uses integer as return type.
    1379224900
    1333161000
    1350076300
    1337188501
    1397156600
    
    results[i] = num * (num < 0 ? 0f : 1f)  // knowing what we know now, using floats should be slower again.
    1572278499
    1579003401
    1660701999
    1576237400
    1590275300
    // ...and it is.
    
    // Now lets take a look at the intuitive solution
    
    num < 0 ? 0 : num      // the variable num is of type float. returning a float from a ternary operation is slower than returning an int.
    1565419400
    1569075400
    1632352999
    1570062299
    1617906200

This all still begs the question: Why is a ternary operation that returns a float slower than one returning an int? Both an int and float are 32 bits. Without the ternary operation floats are not particularly slow, we can see that because we can multiply the returned int with a float variable, and that does not slow it down. I do not have the answer to that.

As for why the brackets speed up the operation: I am no expert, but I'm guessing it probably has to do with the interpreter slowing down the code:

results[i] = num < 0 ? 0 : 1;

Here the interpreter sees results is an array of type float and simply replaces the integers with floats as an "optimization", this way it doesn't have to convert between types.

results[i] = (num < 0 ? 0 : 1);

Here the brackets force the interpreter to compute everything within them before doing anything else, this results in an int. Only AFTER that will the result be converted to a float so that it can fit in the array, type conversion isn't slow at all.

Again, I have no technical knowledge to back this up, it is only my educated guess.

Hopefully this is a good enough answer, if not at least it should point people with more technical knowledge than me in the right direction.