Why is $\frac{987654321}{123456789} = 8.0000000729?!$
In base $n$ the numerator is $$p = n^{n-1} - \frac{n^{n-1}-1}{(n-1)^2}$$ and the denominator is $$q = \frac{n(n^{n-1}-1)}{(n-1)^2}-1.$$
Note that $p = (n-2)q + n-1$ and for the quotient we get
\begin{align} \frac{p}{q} &= n-2 + \frac{(n-1)^3}{n^n} \frac{1}{1 - \frac{n^2-n+1}{n^n}} \\ &= n-2 + \frac{(n-1)^3}{n^n} \sum_{k=0}^{\infty} \left(\frac{n^2-n+1}{n^n}\right)^k. \end{align}
Indeed for $n=10$ this is
$$\frac{987654321}{123456789} = 8 + \frac{729}{10^{10}}\sum_{k=0}^{\infty}\left(\frac{91}{10^{10}}\right)^k $$
$$729=9^3$$ $$66339=9^3\cdot 91$$ $$6036849=9^3\cdot 91^2$$ $$...$$ $$987654321/123456789=8+9^3\cdot 10^{-10}\cdot\displaystyle\sum_{n=0}^{\infty}(91\cdot 10^{-10})^n$$
Let $$S_n(a)=1 +2a+\ldots +na^{n-1}=\frac{na^{n+1}-(n+1)a^n+1}{(a-1)^2},$$ $$T_n(a)=a^{n-1}+2a^{n-2}+\ldots +n=a^{n-1}S_n(a^{-1}).$$
Then $$ \frac{S_n(a)}{T_n(a)}=\frac{na^{n+1}-(n+1)a^n+1}{a^{n+1}-(n+1)a+n}.$$ For $a=10,n=9$ we have $$ \frac{S_n(a)}{T_n(a)}\approx\frac{8\cdot 10^{10}+1}{10^{10}}. $$